“Happy Holidays! BCO-DMO will be on break from 23 December to 2 January 2025. Submissions and questions will still be accepted, however our responses may be delayed during this time.”

Dataset: emet_W60_other
Deployment: OC315

MET 60 minute averaged data from several non-GLOBEC cruises of interest
Principal Investigator: 
Dr Richard Payne (Woods Hole Oceanographic Institution, WHOI)
BCO-DMO Data Manager: 
Robert C. Groman (Woods Hole Oceanographic Institution, WHOI BCO-DMO)
Project: 
Current State: 
Final no updates expected
Version: 
20110701
Version Date: 
2011-07-01
Description

 

Continuous along track meteorology and sea surface data,
60 minute averaged values, 1997

Processed by:
Richard Payne
Woods Hole Oceanographic Institution 
Woods Hole, MA 20543
rpayne@whoi.edu
 
Additional 
data processing notes are available.

The sea surface temperature as measured by the hull sensor is not shown since the sea surface temperature as measured via the engine inlet (field name is temp_ss1) is more accurate.

Processing Notes

  1. Concatenate daily 1 minute files into one file for whole cruise
  2. Edit file for obvious bad data, i.e., missing data, garbage characters, etc.
  3. Run program which reformats data. Output parameters:
    Year day, lat, long, Speed made good, course made good, gyro 1 & 2, Edo speed, Edo indicator, port wind speed, starboard ws, port wind azimuth, starboard waz, air temp, relative humidity, barometric pressure, sea surface temp @5m & 1m depth, Edo depth, Chirp sonar depth.
  4. Put plots of all parameters on screen and look for obvious single bad points. Edit in basic concatenated file. Except I have not edited depths.
  5. Iterate steps 2-4 until no more obvious bad points.
  6. Run second program which computes true wind speed and direction from speed and course made good, gyros, larger of port or starboard ws and accompanying wind azimuth. Outputs are year day, lat lon, speed and course made good, gyro, relative ws and direction, true ws and direction, air temp, relative humidity, barometric pressure, short- and long-wave radiation,5m and 1m sea surface temps, Edo depth, Chirp sonar depth, Edo speed, Edo indicator.
  7. Check plots of true wind speed and direction to make sure they look ok.
  8. Run vector averaging program which produces 60 minute series. The program uses 60 consecutive records and does not check for missing records. I have not carried depths since hourly averages do not seem useful nor Edo speeds since they seem pretty generally useless. Output parameters are: Year day, lat, long, true wind speed and direction, air temp, relative humidity, barometric pressure, short- and long-wave radiation, sea surface temp @ 5m & 1m.

The data quality is generally pretty poor on the Oceanus cruises. OC297 and OC298 have no SOG, COG, or gyro so I could not correct the winds. I almost set the TWS, TWD to 0 but decided to leave them in as RWS, RWD. One could get a semiqualitative feel for the winds. OC301 had gyro but no SOG, COG so I computed them from the GPS position differences. It came out better than I expected. Warn users to be skeptical about the Oceanus data.

From: Richard E. Payne / 11 Apr 1997 09:05:25 -0400
Updated: April 29, 2004; G.Heimerdinger

updated: June 28, 2011;  MDA

More information about this dataset deployment