Processing Notes from Researcher:
Epifluorescence Microscopy Analysis
Phytoplankton images were captured with an Olympus Microscope DP72 Camera using an Olympus BX51 fluorescence microscope. 20 images were taken under the fluorescence of FITC (green fluorescence) n order to capture the fluorescence of cell proteins. Proflavine overstained cells to the point that we were not able to confidently differentiate heterotrophic cells from autotrophic cells, therefore only biomass and abundance values were able to be calculated. A 60x magnification lens was used to image slides with 0.8 µm filters while 20x magnification was used to image slides with 8 µm filters. Images were then processed using the ImageJ image analysis software (v 1.52a or 1.53c). Cells were manually outlined using the freehand tool and approximate feret cell length and cell area were calculated by ImageJ in pixels and then converted to microns using a calibration scale. To avoid biasing the examined cell size, cells that were roughly greater than 50% out of frame and cells that were broken or fragmented were not included in analysis. Conversions factors were applied to account for volume filtered and percentage of the filter area analyzed. To determine the true filtration diameter, a light microscope was used to examine a 25 mm glass fiber filter (GF/F) filter that had a small amount of dyed water filtered through. It was discovered that the filter funnel blocks roughly 12% of the 25-mm filter and the filtered region had a diameter of 22 mm. Equations 1-5 show the equations used to calculate cell width, biovolume, ESD (equivalent spherical diameter) and biomass, where * implies we assumed that cell height = cell width/2. ESD was used as a consistent measure of mean cell size since many plankton have an irregular shape. The height of a cell was assumed to be roughly equivalent to half of the cell width since cells are often flattened during filtration (Taylor et al., 2011) with the exception of diatoms. The biomass of diatoms (which were the only taxon we could conclusively identify) was estimated allometrically using equation 5 while all other cell biomass (non-diatoms) was estimated allometrically using equation 4. (Menden-Deuer and Lessard, 2000).
Equation 1: Cell width = (4/π) x (Area of the cell/Feret length of the cell)
Equation 2: Biovolume = (4/3)(π) x (Feret Length/2) x (Cell Width/2) x (Cell Height*/2)
Equation 3: ESD = 2 x (3 x Biovolume/4π)^(1/3)
Equation 4: Biomass (non-diatoms) = 0.216 x Biovolume^0.939
Equation 5: Biomass (diatoms) = 0.288 x Biovolume^0.811