Optics from floating sediment traps from R/V Thomas G. Thompson cruise TT007 in the Equatorial Pacific in 1992 during the U.S. JGOFS Equatorial Pacific (EqPac) project

Website: https://www.bco-dmo.org/dataset/2666
Version: February 14, 1996
Version Date: 1996-02-14

Project
» U.S. JGOFS Equatorial Pacific (EqPac)

Program
» U.S. Joint Global Ocean Flux Study (U.S. JGOFS)
ContributorsAffiliationRole
Trees, Charles C.San Diego State University (SDSU)Principal Investigator
Chandler, Cynthia L.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

Optics from floating sediment traps


Methods & Sampling

 

   PI:              Charles Trees
   of:              San Diego State University
   dataset:         Bio Optics deployed with Murray's Floating Sediment Traps
   dates:           February 11, 1992 to February 13, 1992
   location:        N: 5.1083  S: 5.0158  W: -140.0305  E: -139.8817
   project/cruise:  EQPAC/TT007 - Spring Survey
   ship:            Thomas Thompson
 
 
 

[ table of contents | back to top ]

Data Files

File
optics_trap.csv
(Comma Separated Values (.csv), 358.03 KB)
MD5:b96ffda40754af241a96354227e90c6c
Primary data file for dataset ID 2666

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
file

a unique file number assigned to each
data set

sta

station number from event log

lat_n

nominal latitude (- values are South)

whole degrees
event

event number from event log

date_end

end date/time of the data or the mooring deployment (reported as MMDDHHmm)

date

date of data cycle (reported as MMDDYY)

time

time of data cycle (reported as (HHmmss)

par

photosynthetically available radiation at the reported depth

uE/m2/sec
fluor

natural fluorescense - upwelled radiance at 683 nm

nE/m2/ster/sec
depth

water depth of recording instrument

meters
temp

water temperature at reported depth

deg C


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Bio-Optical Profiling System
Generic Instrument Name
Bio-Optical Profiling System
Generic Instrument Description
Bio-Optical Profiling System (BOPS) is an updated version of the BOPS originally developed by Smith et al. (1984) and is used to collect optical data. The heart of the BOPS is a Biospherical instruments MER-1048 Spectroradiometer which measures up and downwelling spectral irradiance and upwelling spectral radiance. The MER-1048 also has sensors for Photosynthetically Available Radiation (PAR), depth, tilt and roll. In addition, temperature and conductivity are measured with a Sea-Bird CTD, chlorophyll fluorescence is measured with a Sea Tech fluorometer and beam transmission with a Sea Tech 25-cm transmissometer. The Mer-1048 acquires all the data 16 times a second, averages it to four records a second and sends it up the cable to a deck box and a Compaq-286 computer which stores the data on the hard disk. Additionally, a deck cell measures the downwelling surface irradiance in four spectral channels. Also surface PAR is measured continuously using a Biospherical Instruments QSR-240 Integrating PAR sensor. The profile data is commonly filtered to remove obvious data spikes and then binned into one-meter averages. Raymond C. Smith, Charles R. Booth, and Jeffrey L. Star, "Oceanographic biooptical profiling system," Appl. Opt. 23, 2791-2797 (1984).

Dataset-specific Instrument Name
Floating Sediment Trap
Generic Instrument Name
Sediment Trap - Floating
Generic Instrument Description
Floating sediment traps are specially designed sampling devices deployed to float in the water column (as opposed to being secured to a mooring at a fixed depth) for periods of time to collect particles from the water column that are falling toward the sea floor. In general a sediment trap has a container at the bottom to collect the sample and a broad funnel-shaped opening at the top with baffles to keep out very large objects and help prevent the funnel from clogging. The 'Sediment Trap -Floating' designation is used for a floating type of sediment trap about which no other design details are known.


[ table of contents | back to top ]

Deployments

TT007

Website
Platform
R/V Thomas G. Thompson
Start Date
1992-01-30
End Date
1992-03-13
Description
Purpose: Spring Survey Cruise; 12°N-12°S at 140°W TT007 was one of five cruises conducted in 1992 in support of the U.S. Equatorial Pacific (EqPac) Process Study. The five EqPac cruises aboard R/V Thomas G. Thompson included two repeat meridional sections (12°N - 12°S), 2 equatorial surveys, and a benthic survey (all at 140° W). The scientific objectives of this study were to observe the processes in the Equatorial Pacific controlling the fluxes of carbon and related elements between the atmosphere, euphotic zone, and deep ocean. As luck would have it, the survey window coincided with an El Nino event. A bonus for the research team.


[ table of contents | back to top ]

Project Information

U.S. JGOFS Equatorial Pacific (EqPac)


Coverage: Equatorial Pacific


The U.S. EqPac process study consisted of repeat meridional sections (12°N -12°S) across the equator in the central and eastern equatorial Pacific from 95°W to 170°W during 1992. The major scientific program was focused at 140° W consisting of two meridional surveys, two equatorial surveys, and a benthic survey aboard the R/V Thomas Thompson. Long-term deployments of current meter and sediment trap arrays augmented the survey cruises. NOAA conducted boreal spring and fall sections east and west of 140°W from the R/V Baldridge and R/V Discoverer. Meteorological and sea surface observations were obtained from NOAA's in place TOGA-TAO buoy network.

The scientific objectives of this study were to determine the fluxes of carbon and related elements, and the processes controlling these fluxes between the Equatorial Pacific euphotic zone and the atmosphere and deep ocean. A broad overview of the program at the 140°W site is given by Murray et al. (Oceanography, 5: 134-142, 1992). A full description of the Equatorial Pacific Process Study, including the international context and the scientific results, appears in a series of Deep-Sea Research Part II special volumes:

Topical Studies in Oceanography, A U.S. JGOFS Process Study in the Equatorial Pacific (1995), Deep-Sea Research Part II, Volume 42, No. 2/3.

Topical Studies in Oceanography, A U.S. JGOFS Process Study in the Equatorial Pacific. Part 2 (1996), Deep-Sea Research Part II, Volume 43, No. 4/6.

Topical Studies in Oceanography, A U.S. JGOFS Process Study in the Equatorial Pacific (1997), Deep-Sea Research Part II, Volume 44, No. 9/10.

Topical Studies in Oceanography, The Equatorial Pacific JGOFS Synthesis (2002), Deep-Sea Research Part II, Volume 49, Nos. 13/14.



[ table of contents | back to top ]

Program Information

U.S. Joint Global Ocean Flux Study (U.S. JGOFS)


Coverage: Global


The United States Joint Global Ocean Flux Study was a national component of international JGOFS and an integral part of global climate change research.

The U.S. launched the Joint Global Ocean Flux Study (JGOFS) in the late 1980s to study the ocean carbon cycle. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. As we studied ocean biogeochemistry, we learned that our simple views of carbon uptake and transport were severely limited, and a new "wave" of ocean science was born. U.S. JGOFS has been supported primarily by the U.S. National Science Foundation in collaboration with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy and the Office of Naval Research. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP).



[ table of contents | back to top ]