CTD profile data from Polar Star Transect 1 from USCGC Polar Star cruise PS02_2002 from the Southern Ocean, south of New Zealand in 2002 (SOFeX project)

Website: https://www.bco-dmo.org/dataset/2812
Version: 01 May 2007
Version Date: 2007-05-01

Project
» Southern Ocean Iron Experiment (SOFeX)

Programs
» Ocean Carbon and Biogeochemistry (OCB)
» Iron Synthesis (FeSynth)
ContributorsAffiliationRole
Buesseler, Kenneth O.Woods Hole Oceanographic Institution (WHOI)Principal Investigator
Chandler, Cynthia L.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

CTD profile data from Polar Star Transect 1

Methods & Sampling

Methodology: data were collected with SeaBird SeaCat SBE-19 CTD profiler with
Seapoint Fluorescence sensor, however no fluorescence data were recorded


Data Processing Description

 Change history: YYMMDD
    060206: original raw data downloaded from SOFeX project Web site
    070430: data reprocessed by Terry McKee (PO Dept, WHOI)
    070501: added to OCB database by Cyndy Chandler, OCB DMO, (cchandler@whoi.edu)
  
 OCB DMO Notes:  detailed data processing notes 

[ table of contents | back to top ]

Data Files

File
ctd_transect.csv
(Comma Separated Values (.csv), 103.93 KB)
MD5:14f7b66b9e0fc9435e3bcce1b7c1e95e
Primary data file for dataset ID 2812

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
event

unique sampling event composite of day, month, year and time (GMT)

DDMMYY_hhmm
date

date sampling began (GMT)

YYYYMMDD
time

time sampling began (GMT)

hhmm
lon

longitude, negative denotes West

decimal degrees
lat

latitude, negative denotes South

decimal degrees
sta

station identifier

dimensionless
station

station location name

alpha_numeric
Pmax

pressure; maximum in profile

decibars
yrDay

decimal day of year

decimal day of year
time_elaps

elapsed time since beginning of cast

seconds
press

pressure; from CTD Strain Gauge

decibars
depth

depth; calculated from CTD pressure

meters
temp

temperature, from CTD, ITS-90

degrees Celsius
sal

salinity, from CTD, PSS-78 (PSU)

dimensionless
potemp

potential temperature, ITS-90

degrees Celsius
sigma_t

sigma-T (density)

kilograms/meter^3
sigma_0

sigma-theta (potential density)

kilograms/meter^3
cond

conductivity from CTD

Siemens/meter


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
CTD Seabird 19
Generic Instrument Name
CTD Sea-Bird SEACAT 19
Dataset-specific Description
SeaBird SeaCat SBE-19 CTD profiler with Seapoint Fluorescence sensor, however no fluorescence data were recorded
Generic Instrument Description
The Sea-Bird SBE 19 SEACAT Recorder measures conductivity, temperature, and pressure (depth). The SEACAT is self-powered and self-contained and can be deployed in profiling or moored mode. The SBE 19 SEACAT was replaced in 2001 by the 19plus. more information from Sea-Bird Electronics


[ table of contents | back to top ]

Deployments

PS02_2002

Website
Platform
USCGC Polar Star
Report
Start Date
2002-02-11
End Date
2002-02-21
Description
Cruise dates provided by David Forcucci, USCG Science Liaison Brief cruise plan description: Three ships were involved in the SOFeX experiment. Each ship operated in the study area at a different time to afford the longest observation time. The designations SOFeX-N and SOFeX-S are sometimes used to distinguish between two iron enriched patches - one in low silicate waters north of the polar front (SOFEX-N), and the other in high silicate waters south of the polar front (SOFEX-S). All three ships, Melville (MV), Revelle (RR) and Polar Star (PS), worked in SOFEX-S, but only the Revelle and Melville worked in the SOFeX N patch and shuttled between the two patches. The USCGC Polar Star was the third of the three vessels to occupy the SOFeX study area in 2002. The main focus of the scientific party aboard the Polar Star was to assess how much carbon was removed from the iron fertilized patches. The cruise report includes a more complete description of the Polar Star cruise and a cruise logbook includes daily entries filed by the Chief Scientist aboard each vessel.

Methods & Sampling
Methodology: data were collected with SeaBird SeaCat SBE-19 CTD profiler with Seapoint Fluorescence sensor, however no fluorescence data were recorded

Processing Description
Change history: YYMMDD 060206: original raw data downloaded from SOFeX project Web site 070430: data reprocessed by Terry McKee (PO Dept, WHOI) 070501: added to OCB database by Cyndy Chandler, OCB DMO, (cchandler@whoi.edu) OCB DMO Notes: http://ocb.whoi.edu/SOFeX/PI-NOTES/ctd_processing_Seacat_PS.html">detailed data processing notes


[ table of contents | back to top ]

Project Information

Southern Ocean Iron Experiment (SOFeX)


Coverage: Southern Ocean, south of New Zealand


Before he passed away in 1993, John Martin suggested that an increase in the flow of iron-rich dust to the ocean causes phytoplankton (single celled algae) to grow. The increased photosynthesis removes carbon dioxide from surface waters as the algae create biomass. This carbon dioxide is replaced by carbon dioxide gas that flows into the sea from the atmosphere. Reduced carbon dioxide in the atmosphere cools the planet (CO2 is a greenhouse gas that warms the earth). The results of this work, funded by the National Science Foundation, the Department of Energy, and the US Coast Guard, will be a much better understanding of how biological processes may regulate climate. (see Related Info: Fe cycle)

A direct test of the 'Martin Hypothesis' that trace concentrations of Fe are responsible for phytoplankton's ability to grow by direct experimental addition of Fe to the surface waters. Consequently the distribution of bioavailable Fe in the surface waters determines large geographical areas primary production and the following flux of fixed organic matter to the deep sea. The aim of the SOFeX project is to investigate the effects of iron fertilization on the productivity of the Southern Ocean. The results of this work will contribute significantly to our understanding of important biogeochemical processes which bear directly on the global carbon cycle, atmospheric carbon dioxide concentration, and climate control.

The SOFeX-N and SOFeX-S designations are sometimes used to distinguish between two iron enriched patches - one in low silicate waters north of the polar front (SOFEX-N), and the other in high silicate waters south of the polar front (SOFEX-S). All three ships, Melville (MV), Revelle (RR) and Polar Star (PS), worked in SOFEX-S, but only the Revelle and Melville worked in the SOFeX N patch and shuttled between the two patches.



[ table of contents | back to top ]

Program Information

Ocean Carbon and Biogeochemistry (OCB)


Coverage: Global


The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.

The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.

The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.

The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.


Iron Synthesis (FeSynth)

Coverage: Global


The two main objectives of the Iron Synthesis program (SCOR Working Group proposal, 2005), are:
1. Data compilation: assembling a common open-access database of the in situ iron experiments, beginning with the first period (1993-2002; Ironex-1, Ironex-2, SOIREE, EisenEx, SEEDS-1; SOFeX, SERIES) where primary articles have already been published, to be followed by the 2004 experiments where primary articles are now in progress (EIFEX, SEEDS-2; SAGE, FeeP); similarly for the natural fertilizations S.O.JGOFS (1992), CROZEX (2004/2005) and KEOPS (2005).

2. Modeling and data synthesis of specific aspects of two or more such experiments for various topics such as physical mixing, phytoplankton productivity, overall ecosystem functioning, iron chemistry, CO2 budgeting, nutrient uptake ratios, DMS(P) processes, and combinations of these variables and processes.

SCOR Working Group proposal, 2005. "The Legacy of in situ Iron Enrichments: Data Compilation and Modeling".
http://www.scor-int.org/Working_Groups/wg131.htm

See also: SCOR Proceedings Vol. 42 Concepcion, Chile October 2006, pgs: 13-16 2.3.3 Working Group on The Legacy of in situ Iron Enrichments: Data Compilation and Modeling.

The first objective of the Iron Synthesis program involves a data recovery effort aimed at assembling a common, open-access database of data and metadata from a series of in-situ ocean iron fertilization experiments conducted between 1993 and 2005. Initially, funding for this effort is being provided by the Scientific Committee on Oceanic Research (SCOR) and the U.S. National Science Foundation (NSF).

Through the combined efforts of the principal investigators of the individual projects and the staff of Biological and Chemical Oceanography Data Management Office (BCO-DMO), data currently available primarily through individuals, disparate reports and data agencies, and in multiple formats, are being collected and prepared for addition to the BCO-DMO database from which they will be freely available to the community.

As data are contributed to the BCO-DMO office, they are organized into four overlapping categories:
1. Level 1, basic metadata
(e.g., description of project/study, general location, PI(s), participants);
2. Level 2, detailed metadata and basic shipboard data and routine ship's operations
(e.g., CTDs, underway measurements, sampling event logs);
3. Level 3, detailed metadata and data from specialized observations
(e.g., discrete observations, experimental results, rate measurements) and
4. Level 4, remaining datasets
(e.g., highest level of detailed data available from each study).

Collaboration with BCO-DMO staff began in March of 2008 and initial efforts have been directed toward basic project descriptions, levels 1 and 2 metadata and basic data, with detailed and more detailed data files being incorporated as they become available and are processed.

Related file

Program Documentation

The Iron Synthesis Program is funded jointly by the Scientific Committee on Oceanic Research (SCOR) and the U.S. National Science Foundation (NSF).



[ table of contents | back to top ]