Nutrients and Pigments from R/V Cape Henlopen BAMS-multi in the Chesapeake Bay from 2000-2004 (BAMS project)

Website: https://www.bco-dmo.org/dataset/2923 Version: 19 November 2008 Version Date: 2008-11-19

Project

» Biocomplexity of Aquatic Microbial Systems (BAMS)

Contributors	Affiliation	Role
<u>Ward, Bess B.</u>	Princeton University	Principal Investigator, Contact
<u>Collier, Jackie L.</u>	Stony Brook University (SUNY Stony Brook)	Co-Principal Investigator
Cornwell, Jeffrey	University of Maryland Center for Environmental Science (UMCES/HPL)	Co-Principal Investigator
<u>Glibert, Patricia</u> <u>A.</u>	University of Maryland Center for Environmental Science (UMCES/HPL)	Co-Principal Investigator
Jackson, George A.	Texas A&M University (TAMU)	Co-Principal Investigator
<u>Kana, Todd</u>	University of Maryland Center for Environmental Science (UMCES/HPL)	Co-Principal Investigator
<u>Voytek, Mary A.</u>	United States Geological Survey (USGS)	Co-Principal Investigator
<u>Zehr, Jonathan</u> <u>P.</u>	University of California-Santa Cruz (UCSC)	Co-Principal Investigator
<u>Gegg, Stephen</u> <u>R.</u>	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Table of Contents

- Dataset Description
 - Methods & Sampling
 - Data Processing Description
- Data Files
- <u>Parameters</u>
- Deployments
- Project Information
- Funding

Dataset Description

BAMS - Nutrients and Pigments data for 2001, 2002, 2003, 2004

Methods & Sampling

(none provided to date)

Data Processing Description

Analysis methods:

ammonium (NH4), nitrate (NO3), nitrite (NO2), silicate (Si), o-phosphate (o-Phos) - Autoanalysis colorimetry

PN, PC - Exeter Analytical, Inc. (EAI) CE-440 Elemental Analyzer

Dissolved free amino acids (DFAA) - fluorescence o-phthalaldehyde method (modification of the Parsons et al. (1984) and the Keil and Kirkman (1991))

Dissolved organic carbon (DOC) - Shimadu 5000A combustion analyzer.

Total dissolved nitrogen (TDN) and total dissolve phosphorus (TDP) - persulfate oxidation technique.

Urea - Enymatic method with detection of ammonium (McCarthy, J. J. 1970) and direct conversion method (Goeyens, L., N. Kindermans, M. A. Yusuf, and M. Elskens.1998.)

Chlorophyll - fluorometric

[table of contents | back to top]

Data Files

File

NutrientsPigments.csv(Comma Separated Values (.csv), 41.89 KB) MD5:30b968920b571c0d2f6012614a7b46cf

Primary data file for dataset ID 2923

[table of contents | back to top]

Parameters

Parameter	Description	Units
Site_ID	Alphanumeric string used as the ID for a sampling site	(none)
Site_Name	Alphanumeric string used as the name of a sampling site	(none)
date	BCO-DMO formatted sample date	YYYYMMDD
Sample_Date	Original spreadsheet formatted sample date	Da-Mon-Yr
Depth_Loc	Alphanumeric string describing depth at which a sample was collected (Surf, Deep). No actual depth (m) of collection provided.	(none)
NH4	Ammonium	uM
NO3	Nitrate	uM
NO2	Nitrite	uM
Si	Silica	uM
o_Phos	Organic Phosphate	uM
TDN	Total Dissolved Nitrogen	uM
TDP	Total Dissolved Phosphorus	uM
PC	Particulate Carbon	uM
PN	Particulate Nitrogen	uM
PC_to_PN	Ratio of Particulate Carbon to Particulate Nitrogen	dimensionless ratio
Urea	Urea	uM N

DFAA	Dissolved free amino acid	uM
DOC	Dissolved organic carbon	uM C
Chl	Chlorophyll	ug/L
DON	Dissolved Organic Nitrogen	uM
DOP	Dissolved Organic Phosphorus	uM
total_chl_c3	HPLC Pigment - total chlorophyll c3	ug/L
chl_c2	HPLC Pigment - chlorophyll c2	ug/L
chl_c1	HPLC Pigment - chlorophyll c1	ug/L
chlide_a	HPLC Pigment - chlorophyllide a	ug/L
phide_a	HPLC Pigment - phide a	ug/L
peridinin	HPLC Pigment - peridinin	ug/L
but_fuco	HPLC Pigment - butanoyloxyfucoxanthin	ug/L
fuco	HPLC Pigment - fucoxanthin	ug/L
neo	HPLC Pigment - neoxanthin	ug/L
pras	HPLC Pigment - prasinoxanthin	ug/L
viola	HPLC Pigment - violaxanthin	ug/L
hex_fuco	HPLC Pigment - hexanoyloxyfucoxanthin	ug/L
diad	HPLC Pigment - diadinoxanthin	ug/L
anthera	HPLC Pigment - anthera	ug/L
allo	HPLC Pigment - alloxanthin	ug/L
тухо	HPLC Pigment - myxoxanthin	ug/L
diato	HPLC Pigment - diatoxanthin	ug/L
zea	HPLC Pigment - zeaxanthin	ug/L
lut	HPLC Pigment - lutein	ug/L
cantha	HPLC Pigment - canthaxanthin	ug/L
gyr_diester	HPLC Pigment - gyroxanthin diester	ug/L
chl_b	HPLC Pigment - chlorophyll b	ug/L
DV_chl_a	HPLC Pigment - divinyl Chlorophyll a	ug/L
MV_chla	HPLC Pigment - monovinyl Chlorophyll a	ug/L
phytin_a	HPLC Pigment - phytin a	ug/L
carotenes	HPLC Pigment - carotenes	ug/L
total_chl_a	HPLC Pigment - total chlorophyll a	ug/L
lat	latitude, negative denotes South	decimal degrees
lon	longitude, negative denotes West	decimal degrees
depth	Depth of sample	meters

[table of contents | back to top]

Deployments

BAMS-multi

Website	https://www.bco-dmo.org/deployment/57844
Platform	R/V Cape Henlopen
Start Date	2001-04-04
End Date	2004-10-06
Description	 Multiple year sampling at sites in the Chesapeake Bay, one of its branches, the Choptank River, and the open ocean of the Sargasso Sea. Methods & Sampling (none provided to date) Processing Description Analysis methods: ammonium (NH4), nitrate (NO3), nitrite (NO2), silicate (Si), o-phosphate (o-Phos) - Autoanalysis colorimetry PN, PC - Exeter Analytical, Inc. (EAI) CE-440 Elemental Analyzer Dissolved free amino acids (DFAA) - fluorescence o-phthalaldehyde method (modification of the Parsons et al. (1984) and the Keil and Kirkman (1991)) Dissolved organic carbon (DOC) - Shimadu 5000A combustion analyzer. Total dissolved nitrogen (TDN) and total dissolve phosphorus (TDP) - persulfate oxidation technique. Urea - Enymatic method with detection of ammonium (McCarthy, J. J. 1970) and direct conversion method (Goeyens, L., N. Kindermans, M. A. Yusuf, and M. Elskens, 1998.) Chlorophyll - fluorometric

[table of contents | back to top]

Project Information

Biocomplexity of Aquatic Microbial Systems (BAMS)

Website: http://geoweb.princeton.edu/research/biocomplexity/index.html

Coverage: Chesapeake Bay, one of its branches, the Choptank River, and the open ocean of the Sargasso Sea

NSF: Collaborative Research: Biocomplexity of Aquatic Microbial Systems: Relating Diversity of Microorganisms to Ecosystem Function

The "Biocomplexity of Aquatic Microbial Systems: Relating Diversity of Microorganisms to Ecosystem Function" Project was funded by the US NSF in 2000 as one of several collaborative research initiatives comprising the NSF Biocomplexity program. Microbial biogeochemical cycling of the elements regulates a dynamic environment in which the cycles of different elements are linked through the physiology of microorganisms. While a certain degree of understanding can be gained through physical/chemical approaches to measurement and modeling of the net transformations, these approaches necessarily rely on gross simplifications about the role and regulation of the various functional groups (guilds) involved. The nutrient elements, such as carbon , nitrogen, phosphorous and several important metals, occur in ecosystems in many different forms (e.g., organic carbon and carbon dioxide; nitrate, nitrite, nitrous oxide, organic nitrogen and nitrogen gas, etc.). The transformations between different forms, and the distributions of the various compounds, are largely controlled by microbes. Thus the physiology of bacteria and phytoplankton is largely responsible for the chemistry of natural systems, through what we call microbial biogeochemical cycling.

Our present understanding of elemental cycling is partly derived from measurements and modeling of the distribution of chemical compounds, and the measurement of the rates of transfer of compounds from one form to another. This approach has led to an appreciation of the overwhelming importance of microbes in regulating ecosystem biogeochemistry. But they still represent a great oversimplification of the complexities of microbial processes. Recent advances in molecular microbial ecology have shown the microbial world to contain immense diversity and complexity at every level: redundancy and duplication of functional genes within a single organism; molecular diversity among functional genes that encode the same process in different organisms; large genetic diversity among different organisms apparently engaged in the same biogeochemical function within single communities; great variability in the species composition of different communities that

apparently perform equally well.

The goal of this project is to investigate the functional relationship between complexity in microbial communities and the physical/chemical environment at a range of biological and ecological scales. Previously, such analysis was technologically limited by the inability to assay large numbers of samples simultaneously for a large number of genes and phylotypes. Using gene array technology, the researchers will be able to detect the distribution and differential expression of functional genes in natural systems.

The results of this study constitute the first step towards application of DNA chip technology for gene expression of "exotic" (i.e., not of biomedical importance) processes and organisms in the environment. The gene arrays, along with a full suite of ecosystem process measurements, were applied and assessed along a transect that spans the eutrophic - oligotrophic gradient from the inland waters of the Chesapeake Bay out to the Sargasso Sea. The study area included sites in the Chesapeake Bay, one of its branches, the Choptank River, and the open ocean of the Sargasso Sea, which is the major ocean basin into which water from the Chesapeake Bay flows. Experiments and functional gene studies focused on key transformations in the carbon and nitrogen cycles (C fixation, N fixation, nitrification, denitrification, urea assimilation). The diversity of guilds are being interpreted in terms of ecosystem function, assessed using geochemical data and tracer experiments. In addition to field studies designed to investigate and dissect the natural system, the group of collaborating scientists also performed perturbation experiments using mesocosms. The goal of these experiments was to determine how microbial species diversity affects the major energy and nutrient flows within ecosystems, and to assess the degree of stability or instability associated with changes in redundancy within guilds of microorganisms responsible for major nitrogen and carbon pathways.

The complexity of microbial guilds and microbial processes and the attendant diversity of functional genes and organisms were represented in two parallel investigative themes:

1.Diversity of functional genes: Previously, such analysis was technologically limited by the inability to assay large numbers of samples simultaneously for a large number of genes and organisms. Using gene array technology, we were able to detect the distribution and differential expression of functional genes in natural systems. The results of this study constitutes the first step towards application of DNA chip technology for gene expression of processes and organisms in the natural environment.

2.Rates of biogeochemical processes: Studies focused on key transformations in the carbon and nitrogen cycles (C fixation, N fixation, nitrification, denitrification, urea assimilation). The diversity of microbial guilds were interpreted in terms of ecosystem function, assessed using the physical/chemical data mentioned above and tracer experiments to estimate actual transformation rates.

Station Identifications, locations, and sample depths Location ID Latitude Longitude Shallow (m) Deep (m) Upper Choptank CT100 N 38° 48.356' W 75° 54.625' 1 5 Lower Choptank CT200 N 38° 37.215' W 76° 08.189' 1 8 Upper Bay CB100 N 39° 20.9' W 76° 10.9' 1 10 Mid Bay CB200 N 38° 34.1' W 76° 26.6' 1 21 Lower Bay CB300 N 37° 16.1' W 76° 09.0' 1 12 Plume PL100 N 36° 52' W 75° 55' 1 14 Sargasso SS100 N 36° 24' W 72° 00' 1 2000+

Bacterial Productivities: Leucine incorporation (Kirchman, et al. 1985. Appl. Environm. Microbiol. 49: 599-607)

Photosynthesis: Carbon-14 incorporation (1 hr incubation) in Photosynthetron light gradient. Alpha and Pmax determined from hyperbolic curve fit.

Data supplied by Todd Kana, Horn Point Laboratory, Cambridge, MD.

[table of contents | back to top]

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	OCE-9981482
NSF Division of Ocean Sciences (NSF OCE)	OCE-9981617

[table of contents | back to top]