Contributors | Affiliation | Role |
---|---|---|
Altabet, Mark A. | University of Massachusetts Dartmouth SMAST (UMASSD-SMAST) | Principal Investigator |
Timothy, David | University of Massachusetts Dartmouth SMAST (UMASSD-SMAST) | Co-Principal Investigator |
Chandler, Cynthia L. | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
PI: Mark Altabet and David Timothy of: University of Massachusetts, Dartmouth dates: 08 January 2002 to 20 February 2002 (20020108-20020220) location: N: -48.140 S: -66.612 W: -178.168 E: -169.946 project/cruise: SOFeX/MV and SOFeX/RR platform: SOFeX multi-ship: R/V Melville and R/V Revelle Methodology: none provided with data Change history: YYMMDD 070323: downloaded original data from SOFeX project data web site; 070401: added to OCB database by Cyndy Chandler, OCB DMO, (cchandler@whoi.edu) OCB DMO Note: see processing notes PI note: POM data figures
none provided with data
01 April 2007: Prepared for OCB data system by Cyndy Chandler, OCB DMO (WHOI).
OCB DMO Processing Notes:
The Particulate Organic Matter (POM) data were contributed as a collection of tables in an Excel spreadsheet file.
No documentation was contributed with the data. View or download original POM data file as an:
Excel file or converted to PDF file.
Mark Altabet and David Timothy also contributed a Microsoft Word document with two figures of POM data showing
concentrations of POC and PON for selected stations at different locations with respect to the South patch.
View the POM figures (converted from MS Word to PDF format; dates were not corrected - see OCB DMO note below).
Some metadata were altered when the original data set was added to the OCB database.
A comment in the original Excel data file notes that depth reported for
Revelle station 28 (type SIO4 and patch_loc S_in) is approximate due to a hydrocast failure during that sampling event.
File |
---|
POM.csv (Comma Separated Values (.csv), 22.87 KB) MD5:2d125f28a35ef9ef957e36d1769525d8 Primary data file for dataset ID 2926 |
Parameter | Description | Units |
patch_loc | sampling location relative to patch | dimensionless |
ship_name | research ship name | dimensionless |
event | event number from cruise event log Melville event is doYhhmm and Revelle event is YYYYMMDDhhmm | doYhhmm or YYYYMMDDhhmm |
event_SFX | event number from multi-ship log | YYYYdoYhhmm |
date | date sampling began (UTC) | YYYYMMDD |
time | time sampling began (UTC) | hhmm |
lon | longitude, negative denotes West | decimal degrees |
lat | latitude, negative denotes South | decimal degrees |
station | station location number | dimensionless |
ev_type | sampling method abbreviation code | dimensionless |
depth | depth, calculated from pressure | meters |
POC | Particulate Organic Carbon | micromolar |
PON | Particulate Organic Nitrogen | micromolar |
Dataset-specific Instrument Name | Niskin Bottle |
Generic Instrument Name | Niskin bottle |
Generic Instrument Description | A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc. |
Website | |
Platform | R/V Melville |
Report | |
Start Date | 2002-01-19 |
End Date | 2002-02-26 |
Description | Brief cruise plan description: Three ships were involved in the SOFeX experiment. Each ship operated in the study area at a different time to afford the longest observation time. The designations SOFeX-N and SOFeX-S are sometimes used to distinguish between two iron enriched patches - one in low silicate waters north of the polar front (SOFEX-N), and the other in high silicate waters south of the polar front (SOFEX-S). All three ships, Melville (MV), Revelle (RR) and Polar Star (PS), worked in SOFEX-S, but only the Revelle and Melville worked in the SOFeX N patch and shuttled between the two patches.
The R/V MELVILLE sailed several weeks after the R/V REVELLE to arrive in the study area just as the 'patches' were forming in response to iron fertilization. The MELVILLE's team planned to make detailed measurements of phytoplankton physiology and rate processes, and to sample daily for phytoplankton growth rates and biomass, soluble and particulate iron and zooplankton biomass. A cruise logbook includes daily entries filed by the Chief Scientist aboard each vessel. Methods & Sampling none provided with data Processing Description SOFeX 2002 Multi-ship POM data 01 April 2007: Prepared for OCB data system by Cyndy Chandler, OCB DMO (WHOI). OCB DMO Processing Notes: The Particulate Organic Matter (POM) data were contributed as a collection of tables in an Excel spreadsheet file. No documentation was contributed with the data. View or download original POM data file as an: http://ocb.whoi.edu/SOFeX/PI-NOTES/POM_Altabet.xls">Excel file or converted to http://ocb.whoi.edu/SOFeX/PI-NOTES/POM_Altabet.pdf">PDF file. Mark Altabet and David Timothy also contributed a Microsoft Word document with two figures of POM data showing concentrations of POC and PON for selected stations at different locations with respect to the South patch. http://ocb.whoi.edu/SOFeX/PI-NOTES/POM_altabet_figs.pdf">View the POM figures (converted from MS Word to PDF format; dates were not corrected - see OCB DMO note below). Some metadata were altered when the original data set was added to the OCB database. date was changed to January 29 (from February 29) for Melville station 4 CTD011 S_in original dates for Melville CTD034, CTD058 and CTD068 events all disagreed with data in cruise event log and multi-ship event log, so dates in this POM data set were changed to match the event logs all event, time, lon and lat data for events from both cruises are from individual cruise event logs event_SFX (the SOFeX multi-ship event number) is from the multi-ship event log contributed by Michael Hiscock A comment in the original Excel data file notes that depth reported for Revelle station 28 (type SIO4 and patch_loc S_in) is approximate due to a hydrocast failure during that sampling event. |
Website | |
Platform | R/V Roger Revelle |
Report | |
Start Date | 2002-01-06 |
End Date | 2002-02-14 |
Description | Brief cruise plan description:
Three ships were involved in the SOFeX experiment. Each ship operated in the study area at a different time to afford the longest observation time. The designations SOFeX-N and SOFeX-S are sometimes used to distinguish between two iron enriched patches - one in low silicate waters north of the polar front (SOFEX-N), and the other in high silicate waters south of the polar front (SOFEX-S). All three ships, Melville (MV), Revelle (RR) and Polar Star (PS), worked in SOFEX-S, but only the Revelle and Melville worked in the SOFeX N patch and shuttled between the two patches.
The R/V ROGER REVELLE from Scripps Institution of Oceanography sailed first. The REVELLE team added iron to two areas referred to as 'the North and South patches'. After the iron and an inert chemical tracer (SF6) were added, the REVELLE's primary mission was to map the size and characteristics of the South patch using a SeaSOAR fish towed behind the ship that pumped water up to the ship for sampling and analysis. The REVELLE also collected samples for initial biological shipboard mapping of iron concentrations, nutrients, chlorophyll, and photosynthetic efficiency. A cruise logbook includes daily entries filed by the Chief Scientist aboard each vessel. Methods & Sampling none provided with data Processing Description SOFeX 2002 Multi-ship POM data 01 April 2007: Prepared for OCB data system by Cyndy Chandler, OCB DMO (WHOI). OCB DMO Processing Notes: The Particulate Organic Matter (POM) data were contributed as a collection of tables in an Excel spreadsheet file. No documentation was contributed with the data. View or download original POM data file as an: http://ocb.whoi.edu/SOFeX/PI-NOTES/POM_Altabet.xls">Excel file or converted to http://ocb.whoi.edu/SOFeX/PI-NOTES/POM_Altabet.pdf">PDF file. Mark Altabet and David Timothy also contributed a Microsoft Word document with two figures of POM data showing concentrations of POC and PON for selected stations at different locations with respect to the South patch. http://ocb.whoi.edu/SOFeX/PI-NOTES/POM_altabet_figs.pdf">View the POM figures (converted from MS Word to PDF format; dates were not corrected - see OCB DMO note below). Some metadata were altered when the original data set was added to the OCB database. date was changed to January 29 (from February 29) for Melville station 4 CTD011 S_in original dates for Melville CTD034, CTD058 and CTD068 events all disagreed with data in cruise event log and multi-ship event log, so dates in this POM data set were changed to match the event logs all event, time, lon and lat data for events from both cruises are from individual cruise event logs event_SFX (the SOFeX multi-ship event number) is from the multi-ship event log contributed by Michael Hiscock A comment in the original Excel data file notes that depth reported for Revelle station 28 (type SIO4 and patch_loc S_in) is approximate due to a hydrocast failure during that sampling event. |
Before he passed away in 1993, John Martin suggested that an increase in the flow of iron-rich dust to the ocean causes phytoplankton (single celled algae) to grow. The increased photosynthesis removes carbon dioxide from surface waters as the algae create biomass. This carbon dioxide is replaced by carbon dioxide gas that flows into the sea from the atmosphere. Reduced carbon dioxide in the atmosphere cools the planet (CO2 is a greenhouse gas that warms the earth). The results of this work, funded by the National Science Foundation, the Department of Energy, and the US Coast Guard, will be a much better understanding of how biological processes may regulate climate. (see Related Info: Fe cycle)
A direct test of the 'Martin Hypothesis' that trace concentrations of Fe are responsible for phytoplankton's ability to grow by direct experimental addition of Fe to the surface waters. Consequently the distribution of bioavailable Fe in the surface waters determines large geographical areas primary production and the following flux of fixed organic matter to the deep sea. The aim of the SOFeX project is to investigate the effects of iron fertilization on the productivity of the Southern Ocean. The results of this work will contribute significantly to our understanding of important biogeochemical processes which bear directly on the global carbon cycle, atmospheric carbon dioxide concentration, and climate control.
The SOFeX-N and SOFeX-S designations are sometimes used to distinguish between two iron enriched patches - one in low silicate waters north of the polar front (SOFEX-N), and the other in high silicate waters south of the polar front (SOFEX-S). All three ships, Melville (MV), Revelle (RR) and Polar Star (PS), worked in SOFEX-S, but only the Revelle and Melville worked in the SOFeX N patch and shuttled between the two patches.
The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.
The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.
The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.
The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.
The two main objectives of the Iron Synthesis program (SCOR Working Group proposal, 2005), are:
1. Data compilation: assembling a common open-access database of the in situ iron experiments, beginning with the first period (1993-2002; Ironex-1, Ironex-2, SOIREE, EisenEx, SEEDS-1; SOFeX, SERIES) where primary articles have already been published, to be followed by the 2004 experiments where primary articles are now in progress (EIFEX, SEEDS-2; SAGE, FeeP); similarly for the natural fertilizations S.O.JGOFS (1992), CROZEX (2004/2005) and KEOPS (2005).
2. Modeling and data synthesis of specific aspects of two or more such experiments for various topics such as physical mixing, phytoplankton productivity, overall ecosystem functioning, iron chemistry, CO2 budgeting, nutrient uptake ratios, DMS(P) processes, and combinations of these variables and processes.
SCOR Working Group proposal, 2005. "The Legacy of in situ Iron Enrichments: Data Compilation and Modeling".
http://www.scor-int.org/Working_Groups/wg131.htm
See also: SCOR Proceedings Vol. 42 Concepcion, Chile October 2006, pgs: 13-16 2.3.3 Working Group on The Legacy of in situ Iron Enrichments: Data Compilation and Modeling.
The first objective of the Iron Synthesis program involves a data recovery effort aimed at assembling a common, open-access database of data and metadata from a series of in-situ ocean iron fertilization experiments conducted between 1993 and 2005. Initially, funding for this effort is being provided by the Scientific Committee on Oceanic Research (SCOR) and the U.S. National Science Foundation (NSF).
Through the combined efforts of the principal investigators of the individual projects and the staff of Biological and Chemical Oceanography Data Management Office (BCO-DMO), data currently available primarily through individuals, disparate reports and data agencies, and in multiple formats, are being collected and prepared for addition to the BCO-DMO database from which they will be freely available to the community.
As data are contributed to the BCO-DMO office, they are organized into four overlapping categories:
1. Level 1, basic metadata
(e.g., description of project/study, general location, PI(s), participants);
2. Level 2, detailed metadata and basic shipboard data and routine ship's operations
(e.g., CTDs, underway measurements, sampling event logs);
3. Level 3, detailed metadata and data from specialized observations
(e.g., discrete observations, experimental results, rate measurements) and
4. Level 4, remaining datasets
(e.g., highest level of detailed data available from each study).
Collaboration with BCO-DMO staff began in March of 2008 and initial efforts have been directed toward basic project descriptions, levels 1 and 2 metadata and basic data, with detailed and more detailed data files being incorporated as they become available and are processed.
The Iron Synthesis Program is funded jointly by the Scientific Committee on Oceanic Research (SCOR) and the U.S. National Science Foundation (NSF).