Contributors | Affiliation | Role |
---|---|---|
Chandler, Cynthia L. | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
PI: Dennis McGillicuddy and Nick Bates of: WHOI and BBSR dataset: combined CTD station and Niskin bottle event logs dates: 07 August 2005 to 25 August 2005 (20050807-20050825) location: N: 33.064 S: 29.279 W: -69.410 E: -63.165 project/cruise: EDDIES 2005 Survey 2 OC415-3 and Transect 2 WB0508 platform: R/V OCEANUS and R/V WEATHERBIRD II OCB DMO Note: data were merged from cruise event logs in OCB database (060308) additional documentation is available with those logs; The WB0508 cruise is also called EDDIES Transect #4 or EDT4 (EDDIES Transects 1 and 2 were done in 2004, 3 and 4 in 2005) PI note: The sampling code sta_ref sub-string is the reference station indicator, mostly Oceanus master grid (20km spacing). Note, WBII station number is not included to avoid further confusion. Hence, locations need to be either WBII CTD station number or Oceanus grid number. Where Oceanus grid station does not exist then station will be described in terms of nearest station or some nominal eddy center (EC). For the early part of the cruise station 2070 was deemed EC, but after W-E transect it was obvious it had shifted. Appeared to have moved to the SW. Related information: 070227: Courtney Ewart (UCSB) contributed a merged CTD map for OC415-3 and WB0508 that may help to determine relative CTD station locations (PDF file of 3 maps)
File |
---|
CTD_events_2005_S2.csv (Comma Separated Values (.csv), 8.78 KB) MD5:4b39d8d973c803c6ca1f8c22bb14736f Primary data file for dataset ID 3020 |
Parameter | Description | Units |
event | unique sampling event number composite of UTC date and time | YYYYMMDDhhmm |
date | start date of event (UTC) | YYYYMMDD |
time | start time of event (UTC) | hhmm |
lon | longitude, negative denotes West | decimal degrees |
lat | latitude, negative denotes South | decimal degrees |
sta | station number | dimensionless |
Pmax | pressure, maximum during cast | decibars |
sampling_code | concatenated string: cruise_ID, sampling method, 2 digit sta num, sta_ref and sampling type - where BCT = Bats, Carlson and Thorium P = CTD profile only (no bottles) | dimensionless |
comments | comments, station location descriptor relative to eddy center | dimensionless |
Website | |
Platform | R/V Oceanus |
Report | |
Start Date | 2005-08-07 |
End Date | 2005-08-26 |
Description | EDDIES project 2005 Survey 2 cruise
Funded by: NSF OCE-0241310
Original cruise data are available from the NSF R2R data catalog |
Website | |
Platform | R/V Weatherbird II |
Start Date | 2005-08-17 |
End Date | 2005-08-26 |
Description | EDT4 2005 Transect 2
Funded by: NSF OCE-0241310 |
The original title of this project from the NSF award is: Collaborative Research: Impacts of Eddies and Mixing on Plankton Community Structure and Biogeochemical Cycling in the Sargasso Sea".
Prior results have documented eddy-driven transport of nutrients into the euphotic zone and the associated accumulation of chlorophyll. However, several key aspects of mesoscale upwelling events remain unresolved by the extant database, including: (1) phytoplankton physiological response, (2) changes in community structure, (3) impact on export out of the euphotic zone, (4) rates of mixing between the surface mixed layer and the base of the euphotic zone, and (5) implications for biogeochemistry and differential cycling of carbon and associated bioactive elements. This leads to the following hypotheses concerning the complex, non-linear biological regulation of elemental cycling in the ocean:
H1: Eddy-induced upwelling, in combination with diapycnal mixing in the upper ocean, introduces new nutrients into the euphotic zone.
H2: The increase in inorganic nutrients stimulates a physiological response within the phytoplankton community.
H3: Differing physiological responses of the various species bring about a shift in community structure.
H4: Changes in community structure lead to increases in export from, and changes in biogeochemical cycling within, the upper ocean.
Andrews, J.E., Hartin, C., and Buesseler, K.O.. "7Be Analyses in Seawater by Low Background Gamma-Spectroscopy.," Journal of Radioanalytical and Nuclear Chemistry, v.277, 2008, p. 253.
Andrews, J.E., Hartin, C., Buesseler, K.O.. "7Be Analyses in Seawater by Low Background Gamma-Spectroscopy," Journal of Radioanalytical and Nuclear Chemistry, v.277, 2008, p. 253.
Benitez-Nelson, C.R. and McGillicuddy, D.J.. "Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the Results of the E-Flux and EDDIES Programs.," Deep Sea Research II, v.55, 2008, p. 1133.
Benitez-Nelson, C.R. and McGillicuddy, D.J.. "Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the Results of the E-Flux and EDDIES Programs," Deep-Sea Research II, v.55, 2008, p. 1133.
Bibby, T.S., Gorbunov, M.Y., Wyman, K.W., Falkowski, P.G.. "Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1310.
Buesseler, K.O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., Masque, P., McGillicuddy, D.J., Verdeny, E.. "Particle Fluxes Associated with Mesoscale Eddies in the Sargasso Sea," Deep Sea Research II, v.55, 2008, p. 1426.
Carlson, C.A., del Giorgio, P., Herdl, G.. "Microbes and the dissipation of energy and respiration: From cells to ecosystems," Oceanography, v.20, 2007, p. 89.
Davis, C.S., and McGillicuddy, D.J.. "Transatlantic Abundance of the N2-Fixing Colonial Cyanobacterium Trichodesmium," Science, v.312, 2006, p. 1517.
Ewart, C.S., Meyers, M.K., Wallner, E., McGillicuddy, D.J., Carlson, C.A.. "Microbial Dynamics in Cyclonic and Anticyclonic Mode-Water Eddies in the Northwestern Sargasso Sea," Deep Sea Research II, v.55, 2008, p. 1334.
Ewart, C.S., Meyers, M.K., Wallner, E., McGillicuddy, D.J., Carlson, C.A.. "Microbial Dynamics in Cyclonic and Anticyclonic Mode-Water Eddies in the Northwestern Sargasso Sea," Deep-Sea Research II, v.55, 2008, p. 1334.
Goldthwait, S.A. and Steinberg, D.K.. "Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1360.
Greenan, B.J.W.. "Shear and Richardson number in a mode-water eddy," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1161.
Jenkins, W.J., McGillicuddy, D.J., and Lott III, D.E.. "The Distributions of, and Relationship Between 3 He and Nitrate in Eddies," Deep Sea Research II, v.55, 2008, p. 1389.
Jenkins, W.J., McGillicuddy, D.J., Lott III, D.E.. "The Distributions of, and Relationship Between 3 He and Nitrate in Eddies," Deep-Sea Research II, v.55, 2008, p. 1389.
Ledwell, J.R., McGillicuddy, D.J., and Anderson, L.A.. "Nutrient Flux into an Intense Deep Chlorophyll Layer in a Mode-water Eddy.," Deep Sea Research II, v.55, 2008, p. 1139.
Ledwell, J.R., McGillicuddy, D.J., Anderson, L.A.. "Nutrient Flux into an Intense Deep Chlorophyll Layer in a Mode-water Eddy," Deep-Sea Research II, v.55, 2008, p. 1139.
Li, Q.P. and Hansell, D.A.. "Intercomparison and coupling of MAGIC and LWCC techniques for trace analysis of phosphate in seawater," Analytical Chemica Acta, v.611, 2008, p. 68.
Li, Q.P., Hansell, D.A., McGillicuddy, D.J., Bates, N.R., Johnson, R.J.. "Tracer-based assessment of the origin and biogeochemical transformation of a cyclonic eddy in the Sargasso Sea," Journal of Geophysical Research, v.113, 2008, p. 10006.
Li, Q.P., Hansell, D.A., Zhang, J.-Z.. "Underway monitoring of nanomolar nitrate plus nitrite and phosphate in oligotrophic seawater," Limnology and Oceanography: Methods, v.6, 2008, p. 319.
Li, Q.P., Zhang, J.-Z., Millero, F.J., Hansell, D.A.. "Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell," Marine Chemistry, v.96, 2005, p. 73.
McGillicuddy, D.J., et. al.. "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms," Science, v.316, 2007, p. 1021.
McGillicuddy, D.J., Ledwell, J.R., and Anderson, L.A.. "Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Bloom".," Science, v.320, 2008.
McGillicuddy, D.J., Ledwell, J.R., Anderson, L.A.. "Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Bloom"," Science, v.320, 2008.
McGillicuddy, et. al.. "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms.," Science, v.316, 2007, p. 1021.
Mourino B., and McGillicuddy, D.J.. "Mesoscale Variability in the Metabolic Balance of the Sargasso Sea," Limnology & Oceanography, v.51, 2006, p. 2675.
The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.
The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.
The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.
The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.