Organic matter and nutrients; del-15N, del-13C, POC, POM from R/V Oceanus OC404-01, OC404-04 in the Sargasso Sea from 2004-2004 (EDDIES project)

Website: https://www.bco-dmo.org/dataset/3045
Data Type: Cruise Results
Version: 2 November 2007
Version Date: 2007-11-02

Project
» Eddies Dynamics, Mixing, Export, and Species composition (EDDIES)

Program
» Ocean Carbon and Biogeochemistry (OCB)
ContributorsAffiliationRole
Hansell, DennisUniversity of Miami Rosenstiel School of Marine and Atmospheric Science (UM-RSMAS)Principal Investigator
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

Organic matter and nutrients including del-15N, del-13C, POC and POM from EDDIES Oceanus cruises are reported by Dennis Hansell of the Rosenstiel School of Marine & Atmospheric Science (RSMAS).

Methodology: none provided with data; see Li and Hansell (2008)

OCB DMO note: the original data file included Type B (B indicates bottle sample) and bottom depth reported as 700 meters for all stations (the target depth of the casts); depth_n added to enable merge with bottle data. Parameter quality flags are integer values ranging from 0 through 8: 0 is very good; 1 is OK; 4 is questionable; 8 is bad.

Publication: Qian P. Li and Dennis A. Hansell. 2008. Nutrient distributions in baroclinic eddies of the oligotrophic North Atlantic and inferred impacts on biology, Deep Sea Research Part II: Topical Studies in Oceanography, Volume 55, Issues 10-13, Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: Results from the E-FLUX and EDDIES Programs, May-June 2008, Pages 1291-1299, ISSN 0967-0645, DOI: 10.1016/j.dsr2.2008.01.009 (http://dx.doi.org/10.1016/j.dsr2.2008.01.009)


[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
sta

station number

dimensionless
date

sampling date

YYYYMMDD
time

sampling time

HHMM
lon

longitude, negative denotes West

decimal degrees
lat

latitude, negative denotes South

decimal degrees
depth_n

sample depth, nominal

meters
depth

sample depth

meters
depth_QF

sample depth quality flag

dimensionless
temp

temperature, from CTD, ITS-90

degrees Celsius
temp_QF

CTD temperature quality flag

dimensionless
salinity

CTD salinity, PSS-78

dimensionless
salinity_QF

CTD salinity quality flag

dimensionless
O2_umol_kg

CTD oxygen

micromoles/kilogram
O2_umol_kg_QF

CTD oxygen quality flag

dimensionless
fluor_CTD

CTD relative fluorescence

RFU
fluor_QF

relative fluorescence quality flag

dimensionless
irrad

irradiance

microEinsteins/meter^2/second
irrad_QF

irradiance quality flag

dimensionless
density

density

kilograms/meter^3
density_QF

density quality flag

dimensionless
O2_satP

CTD oxygen saturation

percent
O2_satP_QF

CTD oxygen saturation quality flag

dimensionless
DNN

total dissolved inorganic nitrogen

micromolar
DNN_QF

DNN quality flag

dimensionless
DIP

dissolved inorganic Phosphorus

micromolar
DIP_QF

DIP quality flag

dimensionless
TDN

total dissolved Nitrogen

micromolar
TDN_QF

TDN quality flag

dimensionless
TOC

total organic Carbon

micromolar
TOC_QF

TOC quality flag

dimensionless
POC_ug_L

particulate organic Carbon

micrograms/liter
POC_ug_L_QF

POC quality flag

dimensionless
dC13_POM

delta 13C of particulate organic matter carbon relative to PDB (Pee Dee Belemnite standard)

relative notation
dC13_POM_QF

dC13_POM quality flag

dimensionless
PON_ug_L

particulate organic Nitrogen

micrograms/liter
PON_ug_L_QF

PON quality flag

dimensionless
dN15_POM

delta 15N of particulate organic matter nitrogen relative to atmospheric N2

relative notation
dN15_POM_QF

dN15_POM quality flag

dimensionless


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Niskin Bottle
Generic Instrument Name
Niskin bottle
Generic Instrument Description
A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.


[ table of contents | back to top ]

Deployments

OC404-01

Website
Platform
R/V Oceanus
Report
Start Date
2004-06-11
End Date
2004-07-03
Description
EDDIES 2004 Survey 1 cruise Funded by: NSF OCE-0241310 Original cruise data are available from the NSF R2R data catalog (Cruise DOI: 10.7284/900337)

Methods & Sampling
PI: Dennis Hansell of: Rosenstiel School of Marine & Atmospheric Science (RSMAS) dataset: Organic matter and nutrients; del-15N, del-13C, POC, POM dates: 12 June 2004 to 02 July 2004 (20040612-20040702) location: N: 37.934 S: 29.777 W: -68.703 E: -58.754 project/cruise: EDDIES/OC404-1 2004 Survey 1 platform: R/V Oceanus Methodology: none provided with data Change history: YYMMDD 061117: downloaded original data from EDDIES data web site; 061201: added to OCB database by Nancy Copley and Cyndy Chandler, BCO DMO 070117: change unit information 070521: units modified per Qian Li (RSMAS, Miami) OCB DMO note: the original data file included Type B (B indicates bottle sample) and bottom depth reported as 700 meters for all stations (the target depth of the casts); depth_n added to enable merge with bottle data Parameter quality flags are integer values ranging from 0 through 8: 0 is very good; 1 is OK; 4 is questionable; 8 is bad

OC404-04

Website
Platform
R/V Oceanus
Report
Start Date
2004-07-25
End Date
2004-08-12
Description
EDDIES project 2004 Survey 2 cruise Funded by: NSF OCE-0241310 Original cruise data are available from the NSF R2R data catalog

Methods & Sampling
PI: Dennis Hansell of: Rosenstiel School of Marine & Atmospheric Science (RSMAS), University of Miami dataset: Organic matter and nutrients; del-15N, del-13C, POC, POM dates: 26 July 2004 to 11 Aug 2004 (20040726-20040811) location: N: 31.942 S: 29.958 W: -66.603 E: -59.452 project/cruise: EDDIES/OC404-4 2004 Survey 2 platform: R/V Oceanus Methodology: none provided with data Change history: YYMMDD 061117: downloaded original data from EDDIES data web site; 061201: added to OCB database by Nancy Copley and Cyndy Chandler, BCO DMO 070117: change unit information 070521: units modified per Qian Li (RSMAS, Miami) 071102: station 41 longitude corrected to -64.921 from -54.921 DMO note: the original data file included Type B (B indicates bottle sample) and bottom depth reported as 700 meters for all stations (the target depth of the casts); depth_n added to enable merge with bottle data; Parameter quality flags are integer values ranging from 0 through 8: 0 is very good; 1 is OK; 4 is questionable; 8 is bad


[ table of contents | back to top ]

Project Information

Eddies Dynamics, Mixing, Export, and Species composition (EDDIES)


Coverage: Sargasso Sea


The original title of this project from the NSF award is: Collaborative Research: Impacts of Eddies and Mixing on Plankton Community Structure and Biogeochemical Cycling in the Sargasso Sea".

Prior results have documented eddy-driven transport of nutrients into the euphotic zone and the associated accumulation of chlorophyll. However, several key aspects of mesoscale upwelling events remain unresolved by the extant database, including: (1) phytoplankton physiological response, (2) changes in community structure, (3) impact on export out of the euphotic zone, (4) rates of mixing between the surface mixed layer and the base of the euphotic zone, and (5) implications for biogeochemistry and differential cycling of carbon and associated bioactive elements. This leads to the following hypotheses concerning the complex, non-linear biological regulation of elemental cycling in the ocean:

H1: Eddy-induced upwelling, in combination with diapycnal mixing in the upper ocean, introduces new nutrients into the euphotic zone.

H2: The increase in inorganic nutrients stimulates a physiological response within the phytoplankton community.

H3: Differing physiological responses of the various species bring about a shift in community structure.

H4: Changes in community structure lead to increases in export from, and changes in biogeochemical cycling within, the upper ocean.

Publications

Andrews, J.E., Hartin, C., and Buesseler, K.O.. "7Be Analyses in Seawater by Low Background Gamma-Spectroscopy.," Journal of Radioanalytical and Nuclear Chemistry, v.277, 2008, p. 253.

Andrews, J.E., Hartin, C., Buesseler, K.O.. "7Be Analyses in Seawater by Low Background Gamma-Spectroscopy," Journal of Radioanalytical and Nuclear Chemistry, v.277, 2008, p. 253.

Benitez-Nelson, C.R. and McGillicuddy, D.J.. "Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the Results of the E-Flux and EDDIES Programs.," Deep Sea Research II, v.55, 2008, p. 1133.

Benitez-Nelson, C.R. and McGillicuddy, D.J.. "Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the Results of the E-Flux and EDDIES Programs," Deep-Sea Research II, v.55, 2008, p. 1133.

Bibby, T.S., Gorbunov, M.Y., Wyman, K.W., Falkowski, P.G.. "Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1310.

Buesseler, K.O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., Masque, P., McGillicuddy, D.J., Verdeny, E.. "Particle Fluxes Associated with Mesoscale Eddies in the Sargasso Sea," Deep Sea Research II, v.55, 2008, p. 1426.

Carlson, C.A., del Giorgio, P., Herdl, G.. "Microbes and the dissipation of energy and respiration: From cells to ecosystems," Oceanography, v.20, 2007, p. 89.

Davis, C.S., and McGillicuddy, D.J.. "Transatlantic Abundance of the N2-Fixing Colonial Cyanobacterium Trichodesmium," Science, v.312, 2006, p. 1517.

Ewart, C.S., Meyers, M.K., Wallner, E., McGillicuddy, D.J., Carlson, C.A.. "Microbial Dynamics in Cyclonic and Anticyclonic Mode-Water Eddies in the Northwestern Sargasso Sea," Deep Sea Research II, v.55, 2008, p. 1334.

Ewart, C.S., Meyers, M.K., Wallner, E., McGillicuddy, D.J., Carlson, C.A.. "Microbial Dynamics in Cyclonic and Anticyclonic Mode-Water Eddies in the Northwestern Sargasso Sea," Deep-Sea Research II, v.55, 2008, p. 1334.

Goldthwait, S.A. and Steinberg, D.K.. "Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1360.

Greenan, B.J.W.. "Shear and Richardson number in a mode-water eddy," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1161.

Jenkins, W.J., McGillicuddy, D.J., and Lott III, D.E.. "The Distributions of, and Relationship Between 3 He and Nitrate in Eddies," Deep Sea Research II, v.55, 2008, p. 1389.

Jenkins, W.J., McGillicuddy, D.J., Lott III, D.E.. "The Distributions of, and Relationship Between 3 He and Nitrate in Eddies," Deep-Sea Research II, v.55, 2008, p. 1389.

Ledwell, J.R., McGillicuddy, D.J., and Anderson, L.A.. "Nutrient Flux into an Intense Deep Chlorophyll Layer in a Mode-water Eddy.," Deep Sea Research II, v.55, 2008, p. 1139.

Ledwell, J.R., McGillicuddy, D.J., Anderson, L.A.. "Nutrient Flux into an Intense Deep Chlorophyll Layer in a Mode-water Eddy," Deep-Sea Research II, v.55, 2008, p. 1139.

Li, Q.P. and Hansell, D.A.. "Intercomparison and coupling of MAGIC and LWCC techniques for trace analysis of phosphate in seawater," Analytical Chemica Acta, v.611, 2008, p. 68.

Li, Q.P., Hansell, D.A., McGillicuddy, D.J., Bates, N.R., Johnson, R.J.. "Tracer-based assessment of the origin and biogeochemical transformation of a cyclonic eddy in the Sargasso Sea," Journal of Geophysical Research, v.113, 2008, p. 10006.

Li, Q.P., Hansell, D.A., Zhang, J.-Z.. "Underway monitoring of nanomolar nitrate plus nitrite and phosphate in oligotrophic seawater," Limnology and Oceanography: Methods, v.6, 2008, p. 319.

Li, Q.P., Zhang, J.-Z., Millero, F.J., Hansell, D.A.. "Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell," Marine Chemistry, v.96, 2005, p. 73.

McGillicuddy, D.J., et. al.. "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms," Science, v.316, 2007, p. 1021.

McGillicuddy, D.J., Ledwell, J.R., and Anderson, L.A.. "Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Bloom".," Science, v.320, 2008.

McGillicuddy, D.J., Ledwell, J.R., Anderson, L.A.. "Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Bloom"," Science, v.320, 2008.

McGillicuddy, et. al.. "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms.," Science, v.316, 2007, p. 1021.

Mourino B., and McGillicuddy, D.J.. "Mesoscale Variability in the Metabolic Balance of the Sargasso Sea," Limnology & Oceanography, v.51, 2006, p. 2675.



[ table of contents | back to top ]

Program Information

Ocean Carbon and Biogeochemistry (OCB)


Coverage: Global


The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.

The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.

The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.

The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]