Contributors | Affiliation | Role |
---|---|---|
D'Asaro, Eric | University of Washington (UW APL) | Principal Investigator |
Rehm, Eric | University of Washington (UW APL) | Contact |
McKee, Theresa | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Chlorophyll fluorescence (parameter name chl_raw_float) is reported as raw instrument counts without subtraction of dark counts. Parameter name chl_raw is reported as instrument voltage output minus dark voltage (median in situ dark voltage = 0.083 volts); this parameter was intercalibrated with ship CTD, float and glider fluorometers and is reported as ship CTD volts.
Chlorophyll a from fluorescence (parameter name chl_a_derived): Comparison of the chlorophyll fluorometers on the Knorr CTD and on float 48 with extracted chlorophyll from the R/V Knorr 193-03 water samples show clear depth and time dependences. Accordingly, a linear relationship between chlorophyll and fluorescence is abandoned in favor of a more complex, albeit empirical scheme. Counts from the float 48 fluorometer are converted to chlorophyll using a dark offset and a gain that has dependences on temperature, PAR, depth and yearday, with the gain and offset adjusted so that the float best matches the extracted chlorophyll at the R/V Knorr –float calibration casts (where nearly simultaneous profiles of the R/V Knorr CTD and float 48 were performed to 250 m). The resulting float 48 chlorophyll matches the bottles from both the R/V Knorr process cruise and R/V Bjarni deployment cruises with an error of 30-50%. For more details see
Chlorophyll_Calibration-NAB08.pdf.
File |
---|
Biofloat_48_flntu.csv (Comma Separated Values (.csv), 7.82 MB) MD5:c78e158e424e91fa20874bb1e6e5e41f Primary data file for dataset ID 3429 |
Parameter | Description | Units |
Cruise_ID | Cruise identifier | dimensionless |
float_cycle | index counting float cycles | dimensionless |
mode | 0 = down profile | integer |
julian_day_yr0 | time when sample was taken in decimal days since Jan-0-0000 (Matlab) | dimensionless |
latitude | latitude | decimal degrees |
longitude | longitude | decimal degrees |
start_date | date sampling begins | YYYYMMDD |
start_time | time sampling begins | HHMM |
end_date | date sampling ends | YYYYMMDD |
end_time | time sampling ends | HHMM |
press | water pressure at measurement | decibars |
depth | depth at which sample was taken | meters |
temp | Temperature | degrees Celsius |
potemp | Potential Temperature | degrees Celsius |
sal | Salinity | dimensionless |
sigma_0 | water potential density minus 1000 | kilograms/meter^3 |
chl_raw | Chlorophyll fluorescence (intercalibrated raw instrument output voltage minus median in situ CTD dark voltage); intercalibrated with NAB08 process cruise CTD and gliders. | volts |
chl_raw_float | Raw 12-bit fluorescence counts from FLNTU fluorometer output. No dark counts were subtracted. | counts |
chl_a_derived | Chlorophyll a concentration from fluorescence using empirical algorithm derived from Knorr 193-03 cruise extracted chlorophyll concentrations. | milligrams per meter cubed |
beta700_raw | Raw 12-bit counts from FLNTU backscattering meter at 700 nm. | counts |
bbp700 | Particulate backscattering coefficient at 700 nm, bbp(700), intercalibrated with ship and gliders. | reciprocal meters |
POC_bbp | Particulate organic carbon (POC) from bbp, using relationship determined from Knorr 193-03 cruise. | milligrams per meter cubed |
yrday | Yearday 2008. Yearday 1 is 2008-01-01:00:00:00Z | dimensionless |
Dataset-specific Instrument Name | Lagrangian Float |
Generic Instrument Name | Lagrangian Float |
Dataset-specific Description | The 2008 North Atlantic Bloom Experiment (NAB08) employed a “Lagrangian float”, custom built at the University of Washington Applied Physics Laboratory. (D’Asaro, 2003, Performance of Lagrangian Floats, Journal of Atmospheric and Oceanic Technology, Vol. 20, 896-911). |
Generic Instrument Description | Built at the University of Washington Applied Physics Laboratory, the Lagrangian Float is not an ARGO float. It is primarily designed to accurately follow the three-dimensional motion of water parcels within the mixed layer, through a combination of neutral buoyancy and high drag provided by a one meter diameter black drogue. Typical buoyancies of a few grams result in vertical velocities relative to the water of a few mm/s, small compared to the cm/s turbulent velocities in the mixed layer. The float’s motion within the mixed layer thus closely imitates that of a planktonic organism. The float can also profile vertically. It sends data and receives commands using the Iridium satellite system. The float is designed to accommodate a wide variety of sensors. |
Dataset-specific Instrument Name | WetLabs FLNTU |
Generic Instrument Name | WetLabs FLNTU |
Generic Instrument Description | The WetLabs ECO FLNTU is a dual-wavelength, single-angle sensor for simultaneously determining both chlorophyll fluorescence and turbidity. It detects light scattered by particles suspended in water, generating an output voltage proportional to turbidity or suspended solids. Scaling factors are used to convert the voltage readings to values representing chlorophyll concentration and turbidity expressed in Nephelometric Turbidity Units (NTUs). |
Website | |
Platform | Biofloat 48 |
Start Date | 2008-04-04 |
End Date | 2008-05-25 |
Description | See document NAB08Float48SamplingMethodologyV1.pdf for complete information on Biofloat 48's modes, cycles, and sampling intervals for each sensor. BioFloat 48 was a Lagrangian float deployed during cruise B4-2008 of the vessel R/S Bjarni Saemundsson. |
NAB2008 was a process experiment designed to study an important component of the oceanic carbon system - the North Atlantic spring bloom. The phytoplankton bloom occurring each spring in the North Atlantic, drives the uptake of carbon dioxide and is an important component of the biological pump (Bagniewski et al., 2010). Previous studies in this region have shown the importance of small temporal and spatial scales, i.e. ecosystem patchiness, during the bloom, but were restricted by the limitations of ship-based sampling. Recent advances in autonomous platforms and sensors presented an opportunity to study this important event in a new way. In addition to deployment of a diverse suite of in situ sampling devices, NAB2008 was also a test-bed for developing the strategies and knowledge needed to successfully use new methods to drive the next generation of ocean observations.
In 2008, a coordinated deployment of 1 float, 4 Seagliders and 2 research vessels sampled the evolution of the North Atlantic spring bloom along and surrounding the nearly Lagrangian path followed by the float. The autonomous measurements were continuous through the experimental period, and included CTD, chlorophyll fluorescence, optical backscatter, and oxygen on all platforms; and nitrate, optical attenuation, and various radiance measurements on the float. Velocities were determined from the vehicle motion, with the float extending to a depth of 230 meters and gliders to 1,000 meters. The autonomous vehicles were deployed, rescued, and recovered on three cruises of the Icelandic vessel Bjarni Saemundsson. A 21-day cruise of the R/V Knorr conducted more detailed measurements during the peak of the bloom in May. The R/V Knorr sampling program included optical profiles, ADCP data and analysis of water samples for nutrients, particulate organic carbon, pigments, micro-plankton composition, complemented by guest investigator analyses. Data from both ships were used to calibrate and validate the autonomous measurements.
References:
Bagniewski, W., Fennel, K., Perry, M. J., and D'Asaro, E. A. (2010) Optimizing models of the North Atlantic spring bloom using physical, chemical and bio-optical observations from a Lagrangian float, Biogeosciences Discuss., 7, pp. 8477-8520, doi:10.5194/bgd-7-8477-2010
The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.
The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.
The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.
The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) | |
NSF Division of Ocean Sciences (NSF OCE) |