Contributors | Affiliation | Role |
---|---|---|
Edson, James B. | University of Connecticut (UConn) | Principal Investigator |
Hales, Burke | Oregon State University (OSU-CEOAS) | Contact |
Gegg, Stephen R. | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
The values represent 10 minute means and include interpolated data to fill in data gaps.
There is a period at the end of the cruise with no radiative flux data.
The missing data are flagged with -999.
In all cases, the fluxes use the convention that positive implies upwards.
The fluxes and wind speeds are computed relative to fixed earth,
i.e., they have not been corrected for currents.
BCO-DMO Edits
- Original space delimited data file reformatted to BCO-DMO convention and output as csv file
File |
---|
MetFlux_Revision2.csv (Comma Separated Values (.csv), 806.55 KB) MD5:e310db8612fd245ed7b86920e76b92c4 Primary data file for dataset ID 3448 |
Parameter | Description | Units |
Yday | Yearday 2008 = 1.5 on January 1 at noon (UTC) | dd.xxxxx |
lon | Latitude from ship log (South is negative) | decimal degrees |
lat | Longitude from ship log (West is negative) | decimal degrees |
U10 | Wind speed 10 m above surface from sonics | m/s |
U10N | Wind speed 10 m above surface adjusted to neutral conditions | m/s |
WDir | Wind Direction from (meteorological convention) | deg |
Tsea | Sea Surface Temperature from sea snake | degrees celcius |
T10 | Air Temperature 10 m above surface from Vaisala PTU | degrees celcius |
RH10 | Relative Humidity 10 m above surface from Vaisala PTU | percentage |
Pair | Atmospheric Pressure from Vaisala PTU | mb |
SolarUp | Upwelling Solar Radiation using Payne (1972) albedo formulation | W/m2 |
SolarDn | Downwelling Solar Radiation from Eppley pyranometer | W/m2 |
IRUp | Upwelling Infrared Radiation using Tsea | W/m2 |
IRDn | Downwelling Infrared Radiation from Eppley purgeometer | W/m2 |
StressBK | Wind Stress computed from TOGA COARE 3.0 bulk algorithm | N/m2 |
ustBK | Friction Velocity computed from TOGA COARE 3.0 bulk algorithm | m/s |
SHFBK | Sensible Heat Flux computed from TC 3.0 bulk algorithm | W/m2 |
LHFBK | Latent Heat Flux computed from TC 3.0 bulk algorithm | W/m2 |
Rain | Accumulated Rainfall from optical rain gauge | cm |
RainRate | Rainfall Rate from optical rain gauge | cm/hr |
wCO2BK | CO2 flux computed from COAREG (umol=micromole) | umol/m2/s |
delCO2 | delta CO2 with corrections applied for solubility | mmol/m3 |
K660 | Transfer velocity for CO2 from COAREG adjusted to Sc=660 | cm/hr |
Solubility | Solubility of CO2 at sea surface | mole/m^3/atm |
ScCO2 | Schmidt number of CO2 under ambient conditions | nd |
Website | |
Platform | NOAA Ship Ronald H. Brown |
Report | |
Start Date | 2008-02-29 |
End Date | 2008-04-12 |
Description | The Southern Ocean GasEx experiment was conducted aboard the NOAA ship Ronald H. Brown with 31 scientists representing 22 institutions, companies and government labs. The cruise departed Punta Arenas, Chile on 29 February, 2008 and transited approximately 5 days to the nominal study region at 50°S, 40°W in the Atlantic sector of the Southern Ocean. The scientific work concentrated on quantifying gas transfer velocities using deliberately injected tracers, measuring CO2 and DMS fluxes directly in the marine air boundary layer, and elucidating the physical, chemical, and biological processes controlling air-sea fluxes with measurements in the upper-ocean and marine air. The oceanic studies used a Lagrangian approach to study the evolution of chemical and biological properties over the course of the experiment using shipboard and autonomous drifting instruments. The first tracer patch was created and studied for approximately 6 days before the ship was diverted from the study site, 350 miles to the south, to wait near South Georgia Island for calmer seas. After more than 4 days away, we returned to the study area and managed to find some remnants of the tracer patch. After collecting one final set of water column samples and recovering the two drifting buoys deployed with the patch, we relocated to the northwest, closer to the area where the first patch was started. A second tracer patch was created and studied for approximately 15 days before we had to break off the experiment and transit to Montevideo, Uruguay for the completion of the cruise. |
The Southern Ocean Gas Exchange Experiment (SO-GasEx; also known as GasEx III) took place in the Southwest Atlantic sector of the Southern Ocean (nominally at 50°S, 40°W, near South Georgia Island) in austral fall of 2008 (February 29-April 12, 2008) on the NOAA ship Ronald H. Brown. SO-GasEX is funded by NOAA, NSF and NASA.
The research objectives for Southern Ocean GasEx are to answer the following questions:
SO-GasEx cruise report
SO-GasEx Science Plan
SO-GasEx Implementation Plan
The SO-GasEx cruise report and Science and Implementation plans, may also be available at the SO-GasEx science Web page.
The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.
The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.
The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.
The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.
The Surface Ocean Lower Atmosphere Study (SOLAS) program is designed to enable researchers from different disciplines to interact and investigate the multitude of processes and interactions between the coupled ocean and atmosphere.
Oceanographers and atmospheric scientists are working together to improve understanding of the fate, transport, and feedbacks of climate relevant compounds, and also weather and hazards that are affected by processes at the surface ocean.
Oceanographers and atmospheric scientists are working together to improve understanding of the fate, transport, and feedbacks of climate relevant compounds.
Physical, chemical, and biological research near the ocean-atmosphere interface must be performed in synergy to extend our current knowledge to adequately understand and forecast changes on short and long time frames and over local and global spatial scales.
The findings obtained from SOLAS are used to improve knowledge at process scale that will lead to better quantification of fluxes of climate relevant compounds such as CO2, sulfur and nitrogen compounds, hydrocarbons and halocarbons, as well as dust, energy and momentum. This activity facilitates a fundamental understanding to assist the societal needs for climate change, environmental health, weather prediction, and national security.
The US SOLAS program is a component of the International SOLAS program where collaborations are forged with investigators around the world to examine SOLAS issues ubiquitous to the world's oceans and atmosphere.
» International SOLAS Web site
US-SOLAS (4 MB PDF file)
Other SOLAS reports are available for download from the US SOLAS Web site
Funding Source | Award |
---|---|
National Oceanic and Atmospheric Administration (NOAA) | |
National Aeronautics & Space Administration (NASA) | |
National Science Foundation (NSF) |