delta 15N of nitrate from R/V Knorr cruise KN199-04 & KN204-01 in the Subtropical northern Atlantic Ocean from 2010-2011 (U.S. GEOTRACES NAT project)

Website: https://www.bco-dmo.org/dataset/3913
Data Type: Cruise Results
Version: 1
Version Date: 2013-04-29

Project
» U.S. GEOTRACES North Atlantic Transect (GA03) (U.S. GEOTRACES NAT)

Program
» U.S. GEOTRACES (U.S. GEOTRACES)
ContributorsAffiliationRole
Casciotti, Karen L.Stanford UniversityPrincipal Investigator
Sigman, Daniel M.Princeton UniversityCo-Principal Investigator
Rauch, ShannonWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Dataset includes delta 15N of nitrate (NO3) measurements from the GT10 and GT11 (KN199-04 and KN204-01) U.S. GEOTRACES North Atlantic Transect cruises.


Coverage

Spatial Extent: N:39.7014 E:-9.6601 S:17.3497 W:-69.8644
Temporal Extent: 2010-10-16 - 2011-12-10

Dataset Description

Dataset includes delta 15N of nitrate (NO3) measurements from the GT10 and GT11 (KN199-04 and KN204-01) U.S. GEOTRACES North Atlantic Transect cruises.


Methods & Sampling

Sampling:
Full depth and super station samples were collected from the ship's rosette. Samples were filtered through 0.8/0.45 um acropak500 filter cartridges into triple-rinsed 60 mL HDPE bottles. Demi station samples were collected from the GEOTRACES Go-Flo rosette. Samples were filtered through 0.2 um acropak capsule filters into triple-rinsed 60 mL HDPE bottles. Each sample was collected in triplicate. Samples were frozen at -20 C immediately and stored frozen until analysis.

Analysis:
Samples were analyzed for nitrate d15N and d18O using the denitrifier method (Sigman et al., 2001; Casciotti, et al., 2001, with technical updates described by McIlvin and Casciotti, 2011). Nitrate isotope reference materials USGS32, USGS34, and USGS35 were used to calibrate d18O and USGS32 and USGS34 to calibrate d15N. Each sample was analyzed 2-6 times. Mean and standard deviations are reported for each sample. All samples were analyzed on a DeltaPLUS XP isotope ratio mass spectrometer, with custom-built inlet described in McIlvin and Casciotti, 2011.

Where possible (concentrations exceeded 2 uM), samples and standards were analyzed in 20 nanomole aliquots. When NO3- concentrations were below 2 uM, samples were injected in maximum volume (10 mL) and calibrated using interpolations between standard curves of 5 and 20 nano moles NO3-. Some samples contained nitrate concentrations lower than the typical analytical window (300 nM NO3-), but were analyzed nonetheless. Samples analyzed with concentrations below 0.3 uM are were flagged as "low concentration". These samples contained a subset with major ion peak areas (m/z 44) less than 1 volt-second, which are flagged at "low area". Two of these samples are flagged as having elevated d18O-NO3 values relative to their d15N-NO3 values. The flagged samples should be treated with caution.

This version (16 March 2013) has not been thoroughly intercalibrated with data from the Sigman Lab. Currently, there exists no detachable d15N offset between the datasets. However, Casciotti d18O data are approximately 0.6 permil higher than Sigman d18O data.


Data Processing Description

Processing:
Raw data were calibrated to USGS standards analyzed 6x with each batch of samples. The measured values of these reference materials were used to calibrated the measured d15N and d18O values to the atmospheric N2 and VSMOW reference scales (McIlvin and Casciotti, 2011).

References:
McIlvin, M., and K. L. Casciotti. 2011. Technical updates to the bacterial method for nitrate isotopic analyses. Analytical Chemistry 83: 1850-1856.

BCO-DMO Processing Notes:
- Modified parameter names to conform with BCO-DMO naming conventions.
- Separated original date field into month, day, and year.
- Replaced asterisks in the flag columns with the text "low_area" or "low_concentration". "no_flag" added for unflagged data.
- Replaced blanks with 'nd' to indicate 'no data'.
- Corrected event numbers of KN199-04 station 6 cast 1, station 7 cast 6, and station 9 cast 3 to be consistent with those in the event log and bottle files, per approval by PI. (29-April-2013)

Additional GEOTRACES Processing:
After the data were submitted to the International Data Management Office, BODC, the office noticed that important identifying information was missing in many datasets. With the agreement of BODC and the US GEOTRACES lead PIs, BCO-DMO added standard US GEOTRACES information, such as the US GEOTRACES event number, to each submitted dataset lacking this information. To accomplish this, BCO-DMO compiled a 'master' dataset composed of the following parameters: station_GEOTRC, cast_GEOTRC (bottle and pump data only), event_GEOTRC, sample_GEOTRC, sample_bottle_GEOTRC (bottle data only), bottle_GEOTRC (bottle data only), depth_GEOTRC_CTD (bottle data only), depth_GEOTRC_CTD_rounded (bottle data only), BTL_ISO_DateTime_UTC (bottle data only), and GeoFish_id (GeoFish data only). This added information will facilitate subsequent analysis and inter comparison of the datasets.

Bottle parameters in the master file were taken from the GT-C_Bottle_GT10, GT-C_Bottle_GT11, ODF_Bottle_GT10, and ODF_Bottle_GT11 datasets. Non-bottle parameters, including those from GeoFish tows, Aerosol sampling, and McLane Pumps, were taken from the Event_Log_GT10 and Event_Log_GT11 datasets. McLane pump cast numbers missing in event logs were taken from the Particulate Th-234 dataset submitted by Ken Buesseler.

A standardized BCO-DMO method (called "join") was then used to merge the missing parameters to each US GEOTRACES dataset, most often by matching on sample_GEOTRC or on some unique combination of other parameters.

If the master parameters were included in the original data file and the values did not differ from the master file, the original data columns were retained and the names of the parameters were changed from the PI-submitted names to the standardized master names. If there were differences between the PI-supplied parameter values and those in the master file, both columns were retained. If the original data submission included all of the master parameters, no additional columns were added, but parameter names were modified to match the naming conventions of the master file.

See the dataset parameters documentation for a description of which parameters were supplied by the PI and which were added via the join method.


[ table of contents | back to top ]

Data Files

File
delta_15N-NO3_joined.csv
(Comma Separated Values (.csv), 62.95 KB)
MD5:fa412758d10c672f1f731eab60eddd48
Primary data file for dataset ID 3913

[ table of contents | back to top ]

Related Publications

Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., & Hilkert, A. (2002). Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the Denitrifier Method. Analytical Chemistry, 74(19), 4905–4912. doi:10.1021/ac020113w
Methods
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001). A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Analytical Chemistry, 73(17), 4145–4153. doi:10.1021/ac010088e
Methods

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
cruise_id

Official cruise identifier e.g. KN199-04 = R/V Knorr cruise number 199-04.

text
station_GEOTRC

GEOTRACES station number; ranges from 1 through 12 for KN199-04 and 1 through 24 for KN204-01. Stations 7 and 9 were skipped on KN204-01. PI-supplied values were identical to those in the intermediate
US GEOTRACES master file. Originally submitted as 'Station', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
depth_GEOTRC_CTD

Observation/sample depth in meters, calculated from CTD pressure. PI-supplied values were identical to those in the
intermediate US GEOTRACES master file. Originally submitted as 'CTD Depth', this
parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

meters
press

Pressure (dbars) from CTD.

decibars
event_GEOTRC

Unique identifying number for US GEOTRACES sampling events; ranges from 2001 to 2225 for KN199-04 events and from 3001 to 3282 for KN204-01 events. PI-supplied values were identical to those in the
intermediate
US GEOTRACES master file. Originally submitted as 'Event number', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
cast_GEOTRC

Cast identifier, numbered consecutively within a station. PI-supplied values were identical to those in the intermediate
US GEOTRACES master file. Originally submitted as 'Cast', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
sample_GEOTRC

Unique identifying number for US GEOTRACES samples; ranges from 5033 to 6078 for KN199-04 and from 6112 to 8148 for KN204-01. PI-supplied values were identical to those in the
intermediate
US GEOTRACES master file. Originally submitted as 'GEOTRACES ID', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
sample_bottle_GEOTRC

Unique identification numbers given to samples taken from bottles; rangies from 1 to 24; often used synonymously with bottle number. PI-supplied values were identical to those in the
intermediate
US GEOTRACES master file. Originally submitted as 'Sample #', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
bottle_GEOTRC

Alphanumeric characters identifying bottle type (e.g., NIS representing Niskin and GF representing GOFLO) and position on a CTD rosette. PI-supplied values were identical to those in the intermediate
US GEOTRACES master file. Originally submitted as 'Bottle number', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
month_gmt

2-digit month of year (GMT). in the format mm (01 to 12)

unitless
day_gmt

2-digit day of month (GMT). in the format dd (01 to 31)

unitless
year

4-digit year. in the format YYYY

unitless
time_gmt

Time (GMT) in hours and minutes when the event occurred; 24-hour clock. in the format HHMM

unitless
lat

Latitude in decimal degrees. North = Positive.

decimal degrees
lon

Longitude in decimal degrees. West = Negative.

decimal degrees
d15N_NO3

Nitrate delta 15N, reported in units of permil vs. atmospheric N2.

per mil
d15N_NO3_sd

Standard deviation of d15N_NO3.

per mil
n

n; number of observations/measurements.

dimensionless
flag_low_area

Samples that contained major ion peak areas (m/z 44) less than 1 volt-second are flagged at "low area". The flagged samples should be treated with caution.

dimensionless
flag_low_conc

Samples analyzed with concentrations below 0.3 uM are were flagged as "low concentration". The flagged samples should be treated with caution.

dimensionless
ISO_DateTime_UTC

Date/Time (UTC) of the cast formatted to the ISO8601 standard. T indicates start of time string; Z indicates UTC. in the format YYYY-mm-ddTHH:MM:SS.ssZ

unitless
BTL_ISO_DateTime_UTC

Date and time (UTC) that the bottle was fired, in ISO compliant format. Values were added from the intermediate US GEOTRACES master file (see Processing Description). This standard is based on
ISO 8601:2004(E) and takes on the following form: 2009-08-30T14:05:00[.xx]Z (UTC time)

yyyy-MM-dd'T'HH:mm:ss.SS'Z'


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
GO-FLO Bottle
Generic Instrument Name
GO-FLO Bottle
Dataset-specific Description
Demi station samples were collected from the GEOTRACES GO-FLO rosette.  The U.S. GEOTRACES sampling system consisted of 24 Teflon-coated GO-FLO bottles.
Generic Instrument Description
GO-FLO bottle cast used to collect water samples for pigment, nutrient, plankton, etc. The GO-FLO sampling bottle is specially designed to avoid sample contamination at the surface, internal spring contamination, loss of sample on deck (internal seals), and exchange of water from different depths.

Dataset-specific Instrument Name
Isotope-ratio Mass Spectrometer
Generic Instrument Name
Isotope-ratio Mass Spectrometer
Dataset-specific Description
All samples were analyzed on a DeltaPLUS XP isotope ratio mass spectrometer, with custom-built inlet described in McIlvin and Casciotti, 2011.
Generic Instrument Description
The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).

Dataset-specific Instrument Name
Niskin bottle
Generic Instrument Name
Niskin bottle
Generic Instrument Description
A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.


[ table of contents | back to top ]

Deployments

KN199-04

Website
Platform
R/V Knorr
Report
Start Date
2010-10-15
End Date
2010-11-04
Description
This cruise constitutes the first survey section as part of the U.S. participation in an international program named GEOTRACES. Funding: NSF OCE award 0926423 Science Objectives: To obtain state of the art trace metal and isotope measurements on a suite of samples taken on a mid-latitude zonal transect of the North Atlantic. In particular, sampling targeted the oxygen minimum zone extending off the west African coast near Mauritania, the TAG hydrothermal field, and the western boundary current system along Line W. For additional information, please refer to the GEOTRACES program Web site (https://www.geotraces.org/) for overall program objectives and a summary of properties measured. Science Activities include seawater sampling via GoFLO and Niskin carousels, in situ pumping (and filtration), CTDO2 and transmissometer sensors, underway pumped sampling of surface waters, and collection of aerosols and rain. Hydrography, CTD and nutrient measurements were supported by the Ocean Data Facility (J. Swift) at Scripps Institution of Oceanography and funded through NSF Facilities. They provided an additional CTD rosette system along with nephelometer and LADCP. A trace metal clean Go-Flo Rosette and winch were provided by the group at Old Dominion University (G. Cutter) along with a towed underway pumping system. Additional cruise information is available from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/KN199-04 Other Relevant Links: List of cruise participants: [ PDF ] Cruise track: JPEG image (from Woods Hole Oceanographic Institution, vessel operator) ADCP data are available from the Currents ADCP group at the University of Hawaii: KN199-04 ADCP

KN204-01

Website
Platform
R/V Knorr
Report
Start Date
2011-11-06
End Date
2011-12-11
Description
The US GEOTRACES North Atlantic cruise aboard the R/V Knorr completed the section between Lisbon and Woods Hole that began in October 2010 but was rescheduled for November-December 2011. The R/V Knorr made a brief stop in Bermuda to exchange samples and personnel before continuing across the basin. Scientists disembarked in Praia, Cape Verde, on 11 December. The cruise was identified as KN204-01A (first part before Bermuda) and KN204-01B (after the Bermuda stop). However, the official deployment name for this cruise is KN204-01 and includes both part A and B. Science activities included: ODF 30 liter rosette CTD casts, ODU Trace metal rosette CTD casts, McLane particulate pump casts, underway sampling with towed fish and sampling from the shipboard "uncontaminated" flow-through system. Full depth stations are shown in the accompanying figure (see below). Additional stations to sample for selected trace metals to a depth of 1000 m are not shown. Standard stations are shown in red (as are the ports) and "super" stations, with extra casts to provide large-volume samples for selected parameters, are shown in green. Station spacing is concentrated along the western margin to evaluate the transport of trace elements and isotopes by western boundary currents. Stations across the gyre will allow scientists to examine trace element supply by Saharan dust, while also contrasting trace element and isotope distributions in the oligotrophic gyre with conditions near biologically productive ocean margins, both in the west, to be sampled now, and within the eastern boundary upwelling system off Mauritania, sampled last year. Funding: The cruise was funded by NSF OCE awards 0926204, 0926433 and 0926659. Additional cruise information is available from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/KN204-01 Other Relevant Links: ADCP data are available from the Currents ADCP group at the University of Hawaii at the links below: KN204-01A (part 1 of 2011 cruise; Woods Hole, MA to Bermuda) KN204-01B (part 2 of 2011 cruise; Bermuda to Cape Verde)


[ table of contents | back to top ]

Project Information

U.S. GEOTRACES North Atlantic Transect (GA03) (U.S. GEOTRACES NAT)


Coverage: Subtropical western and eastern North Atlantic Ocean (GA03)


Much of this text appeared in an article published in OCB News, October 2008, by the OCB Project Office.

The first U.S. GEOTRACES Atlantic Section will be specifically centered around a sampling cruise to be carried out in the North Atlantic in 2010. Ed Boyle (MIT) and Bill Jenkins (WHOI) organized a three-day planning workshop that was held September 22-24, 2008 at the Woods Hole Oceanographic Institution. The main goal of the workshop, sponsored by the National Science Foundation and the U.S. GEOTRACES Scientific Steering Committee, was to design the implementation plan for the first U.S. GEOTRACES Atlantic Section. The primary cruise design motivation was to improve knowledge of the sources, sinks and internal cycling of Trace Elements and their Isotopes (TEIs) by studying their distributions along a section in the North Atlantic (Figure 1). The North Atlantic has the full suite of processes that affect TEIs, including strong meridional advection, boundary scavenging and source effects, aeolian deposition, and the salty Mediterranean Outflow. The North Atlantic is particularly important as it lies at the "origin" of the global Meridional Overturning Circulation.

It is well understood that many trace metals play important roles in biogeochemical processes and the carbon cycle, yet very little is known about their large-scale distributions and the regional scale processes that affect them. Recent advances in sampling and analytical techniques, along with advances in our understanding of their roles in enzymatic and catalytic processes in the open ocean provide a natural opportunity to make substantial advances in our understanding of these important elements. Moreover, we are motivated by the prospect of global change and the need to understand the present and future workings of the ocean's biogeochemistry. The GEOTRACES strategy is to measure a broad suite of TEIs to constrain the critical biogeochemical processes that influence their distributions. In addition to these "exotic" substances, more traditional properties, including macronutrients (at micromolar and nanomolar levels), CTD, bio-optical parameters, and carbon system characteristics will be measured. The cruise starts at Line W, a repeat hydrographic section southeast of Cape Cod, extends to Bermuda and subsequently through the North Atlantic oligotrophic subtropical gyre, then transects into the African coast in the northern limb of the coastal upwelling region. From there, the cruise goes northward into the Mediterranean outflow. The station locations shown on the map are for the "fulldepth TEI" stations, and constitute approximately half of the stations to be ultimately occupied.

Figure 1. The proposed 2010 Atlantic GEOTRACES cruise track plotted on dissolved oxygen at 400 m depth. Data from the World Ocean Atlas (Levitus et al., 2005) were plotted using Ocean Data View (courtesy Reiner Schlitzer). [click on the image to view a larger version]

Hydrography, CTD and nutrient measurements will be supported by the Ocean Data Facility (J. Swift) at Scripps Institution of Oceanography and funded through NSF Facilities. They will be providing an additional CTD rosette system along with nephelometer and LADCP. A trace metal clean Go-Flo Rosette and winch will be provided by the group at Old Dominion University (G. Cutter) along with a towed underway pumping system.

The North Atlantic Transect cruise began in 2010 with KN199 leg 4 (station sampling) and leg 5 (underway sampling only) (Figure 2).

KN199-04 Cruise Report (PDF)

Figure 2. The red line shows the cruise track for the first leg of the US Geotraces North Atlantic Transect on the R/V Knorr in October 2010.  The rest of the stations (beginning with 13) will be completed in October-December 2011 on the R/V Knorr (courtesy of Bill Jenkins, Chief Scientist, GNAT first leg). [click on the image to view a larger version]
Atlantic Transect Station location map

The section completion effort resumed again in November 2011 with KN204-01A,B (Figure 3).

KN204-01A,B Cruise Report (PDF)

Figure 3. Station locations occupied on the US Geotraces North Atlantic Transect on the R/V Knorr in November 2011.  [click on the image to view a larger version]
Atlantic Transect/Part 2 Station location map

Data from the North Atlantic Transect cruises are available under the Datasets heading below, and consensus values for the SAFe and North Atlantic GEOTRACES Reference Seawater Samples are available from the GEOTRACES Program Office: Standards and Reference Materials

ADCP data are available from the Currents ADCP group at the University of Hawaii at the links below:
KN199-04   (leg 1 of 2010 cruise; Lisbon to Cape Verde)
KN199-05   (leg 2 of 2010 cruise; Cape Verde to Charleston, NC)
KN204-01A (part 1 of 2011 cruise; Woods Hole, MA to Bermuda)
KN204-01B (part 2 of 2011 cruise; Bermuda to Cape Verde)



[ table of contents | back to top ]

Program Information

U.S. GEOTRACES (U.S. GEOTRACES)


Coverage: Global


GEOTRACES is a SCOR sponsored program; and funding for program infrastructure development is provided by the U.S. National Science Foundation.

GEOTRACES gained momentum following a special symposium, S02: Biogeochemical cycling of trace elements and isotopes in the ocean and applications to constrain contemporary marine processes (GEOSECS II), at a 2003 Goldschmidt meeting convened in Japan. The GEOSECS II acronym referred to the Geochemical Ocean Section Studies To determine full water column distributions of selected trace elements and isotopes, including their concentration, chemical speciation, and physical form, along a sufficient number of sections in each ocean basin to establish the principal relationships between these distributions and with more traditional hydrographic parameters;

* To evaluate the sources, sinks, and internal cycling of these species and thereby characterize more completely the physical, chemical and biological processes regulating their distributions, and the sensitivity of these processes to global change; and

* To understand the processes that control the concentrations of geochemical species used for proxies of the past environment, both in the water column and in the substrates that reflect the water column.

GEOTRACES will be global in scope, consisting of ocean sections complemented by regional process studies. Sections and process studies will combine fieldwork, laboratory experiments and modelling. Beyond realizing the scientific objectives identified above, a natural outcome of this work will be to build a community of marine scientists who understand the processes regulating trace element cycles sufficiently well to exploit this knowledge reliably in future interdisciplinary studies.

Expand "Projects" below for information about and data resulting from individual US GEOTRACES research projects.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]