Particulate Fe isotopes (d56Fe, labile d56Fe, labile[Fe], [Cd], [Ba], and [P]) from R/V Knorr cruises KN199-04, KN204-01 in the Subtropical northern Atlantic Ocean from 2010-2011 (U.S. GEOTRACES NAT project)

Website: https://www.bco-dmo.org/dataset/4074
Version: 08 Nov 2013
Version Date: 2013-11-08

Project
» U.S. GEOTRACES North Atlantic Transect (GA03) (U.S. GEOTRACES NAT)

Program
» U.S. GEOTRACES (U.S. GEOTRACES)
ContributorsAffiliationRole
John, Seth G.University of South CarolinaPrincipal Investigator, Contact
Rauch, ShannonWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

Particulate iron (Fe) isotope data, including suspended particulate total δ56Fe, labile δ56Fe, labile [Fe], [Cd], [Ba], and [P], from the 2010 and 2011 U.S. GEOTRACES North Atlantic Transect cruises (GT10 and GT11).


Methods & Sampling

Note: Methodology for this dataset is the same as that used in the GEOTRACES EPZT particles data from Seth John.

A subsample (0.8 - 51 um-sized) of a total digestion of the suspended particles was provided by P. Lam for the analysis of total particle δ56Fe. Samples were purified by anion exchange chromatography and analyzed by multi-collector ICPMS.

The "labile" phase of the suspended particles was determined by leaching with a pH 8 solution containing 0.1 M oxalic acid and 0.05 M EDTA for 2 hours at 90 degrees C. Method is described in Revels et al (2015). Labile δ56Fe was determined according to the same procedures as total δ56Fe. Concentrations of Fe, Cd, Ba, and P in the labile phase were determined by analysis of the leachate on an Element single-collector ICP-MS.

References:
B.N. Revels, D.C. Ohnemus, P.J. Lam, T.M. Conway, S.G. John (2015) The isotopic signature and distribution of particulate iron in the North Atlantic Ocean. Deep-Sea Research II 116, 321-331. doi:10.1016/j.dsr2.2014.12.004


Data Processing Description

Data Processing:
All concentration data has been corrected for "dipped filter" blanks – filters that were deployed on each cast but did not have any seawater pumped through them. For each element, concentrations from all dipped filter blanks were averaged. The median dipped filter blank has been subtracted from this data. The given uncertainties in concentration data were calculated by propagating uncertainties from instrument precision and the standard deviation of dipped filter blanks. Detection limits are defined as three times the standard deviation of the dipped filter blanks. Concentrations below detection limit are identified as "BDL".

Iron isotope measurements have been corrected for the leach reagent blank and uncertainties were calculated by an isotope mass balance equation involving the instrument precision and the mean and standard deviation of the reagent blank (equation 2 in Revels et al (2015)).

Data Quality Flags:
1 = good data;
0 = no data.

BCO-DMO Processing Notes:
Separated original "Station" column into cruise_id, cruise_name, and station_GEOTRC; added lon column from the original lon_360 column; replaced missing data with "nd" to indicate "no data"; modified parameter names to conform with BCO-DMO naming conventions.

Additional GEOTRACES Processing:
After the data were submitted to the International Data Management Office, BODC, the office noticed that important identifying information was missing in many datasets. With the agreement of BODC and the US GEOTRACES lead PIs, BCO-DMO added standard US GEOTRACES information, such as the US GEOTRACES event number, to each submitted dataset lacking this information. To accomplish this, BCO-DMO compiled a 'master' dataset composed of the following parameters: station_GEOTRC, cast_GEOTRC (bottle and pump data only), event_GEOTRC, sample_GEOTRC, sample_bottle_GEOTRC (bottle data only), bottle_GEOTRC (bottle data only), depth_GEOTRC_CTD (bottle data only), depth_GEOTRC_CTD_rounded (bottle data only), BTL_ISO_DateTime_UTC (bottle data only), and GeoFish_id (GeoFish data only). This added information will facilitate subsequent analysis and inter comparison of the datasets.

Bottle parameters in the master file were taken from the GT-C_Bottle_GT10, GT-C_Bottle_GT11, ODF_Bottle_GT10, and ODF_Bottle_GT11 datasets. Non-bottle parameters, including those from GeoFish tows, Aerosol sampling, and McLane Pumps, were taken from the Event_Log_GT10 and Event_Log_GT11 datasets. McLane pump cast numbers missing in event logs were taken from the Particulate Th-234 dataset submitted by Ken Buesseler.

A standardized BCO-DMO method (called "join") was then used to merge the missing parameters to each US GEOTRACES dataset, most often by matching on sample_GEOTRC or on some unique combination of other parameters.

If the master parameters were included in the original data file and the values did not differ from the master file, the original data columns were retained and the names of the parameters were changed from the PI-submitted names to the standardized master names. If there were differences between the PI-supplied parameter values and those in the master file, both columns were retained. If the original data submission included all of the master parameters, no additional columns were added, but parameter names were modified to match the naming conventions of the master file.

See the dataset parameters documentation for a description of which parameters were supplied by the PI and which were added via the join method.


[ table of contents | back to top ]

Data Files

File
partic_Fe_isotopes_joined.csv
(Comma Separated Values (.csv), 28.14 KB)
MD5:ba40615e1c7729693142a07f19591b18
Primary data file for dataset ID 4074

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
cruise_id

Official cruise identifier e.g. KN199-04 = R/V Knorr cruise number 199-04.

text
cruise_name

Name chosen by project investigators for the research expedition as opposed to the formal/official cruise ID asserted by the vessel operator.

text
station_GEOTRC

GEOTRACES station number; ranges from 1 through 12 for KN199-04 and 1 through 24 for KN204-01. Stations 7 and 9 were skipped on KN204-01. Some GeoFish stations are denoted as X_to_Y indicating the tow occurred between stations X and Y. PI-supplied values were identical to those in the intermediate US GEOTRACES master file. Values were added from the intermediate US GEOTRACES master file (see Processing Description).

dimensionless
lat

Latitude of the sampling station; north is positive.

decimal degrees (-90 to 90)
lon

Longitude of the sampling station; east is positive.

decimal degrees (-180 to 180)
lon_360

Longitude of the sampling station from 0 to 360 degrees.

decimal degrees (0 to 360)
depth

Sample depth, in meters.

meters
event_GEOTRC

Unique identifying number for US GEOTRACES sampling events; ranges from 2001 to 2225 for KN199-04 events and from 3001 to 3282 for KN204-01 events. Values were added from the intermediate US GEOTRACES master file (see Processing Description).

dimensionless
cast_GEOTRC

Cast identifier numbered consecutively within a station. Values were added from the intermediate US GEOTRACES master file (see Processing Description).

dimensionless
sample_GEOTRC

Unique identifying number for US GEOTRACES samples; ranges from 5033 to 6078 for KN199-04 and from 6112 to 8148 for KN204-01. PI-supplied values were identical to those in the intermediate US GEOTRACES master file. Originally submitted as 'Sample_num', this parameter name has been changed to conform to BCO-DMO's GEOTRACES naming conventions.

dimensionless
tot_d56Fe_susp

Fe stable isotope ratio = ((54Fe/56Fe)sample/(54Fe/56Fe)IRMM-014-1)*1000 for the total suspended particles.

permil (0/00)
tot_d56Fe_susp_err2s

2 sigma uncertainty of tot_d56Fe_susp.

permil (0/00)
tot_d56Fe_susp_flag

Data quality flag for tot_d56Fe_susp.

1 = good data;

0 = no data.

dimensionless
labile_d56Fe_susp

Fe stable isotope ratio = ((54Fe/56Fe)sample/(54Fe/56Fe)IRMM-014-1)*1000 for the labile phase of suspended particles.

permil (0/00)
labile_d56Fe_susp_err2s

2 sigma uncertainty of labile_d56Fe_susp.

permil (0/00)
labile_d56Fe_susp_flag

Data quality flag for tot_d56Fe_susp.

1 = good data;

0 = no data.

dimensionless
labile_Fe_susp

Fe concentration.

nanomoles per Liter (nmol L-1 or nM)
labile_Fe_susp_err1s

1 sigma uncertainty of labile_Fe_susp.

nanomoles per Liter (nmol L-1 or nM)
labile_Fe_susp_flag

Data quality flag for labile_Fe_susp.

1 = good data;

0 = no data.

dimensionless
labile_Cd_susp

Cd concentration.

nanomoles per Liter (nmol L-1 or nM)
labile_Cd_susp_err1s

1 sigma uncertainty of labile_Cd_susp.

nanomoles per Liter (nmol L-1 or nM)
labile_Cd_susp_flag

Data quality flag for labile_Cd_susp.

1 = good data;

0 = no data.

dimensionless
labile_Ba_susp

Ba concentration.

nanomoles per Liter (nmol L-1 or nM)
labile_Ba_susp_err1s

1 sigma uncertainty of labile_Ba_susp.

nanomoles per Liter (nmol L-1 or nM)
labile_Ba_susp_flag

Data quality flag for labile_Ba_susp.

1 = good data;

0 = no data.

dimensionless
labile_P_susp

P concentration.

nanomoles per Liter (nmol L-1 or nM)
labile_P_susp_err1s

1 sigma uncertainty of labile_P_susp.

nanomoles per Liter (nmol L-1 or nM)
labile_P_susp_flag

Data quality flag for labile_Ba_susp.

1 = good data;

0 = no data.

dimensionless
sample_bottle_GEOTRC

Unique identification numbers given to samples taken from bottles; ranges from 1 to 24; often used synonymously with bottle number. Values were added from the intermediate US GEOTRACES master file (see Processing Description).

dimensionless
bottle_GEOTRC

Alphanumeric characters identifying bottle type (e.g. NIS representing Niskin and GF representing GOFLO) and position on a CTD rosette. Values were added from the intermediate US GEOTRACES master file (see Processing Description).

dimensionless
depth_GEOTRC_CTD

Observation/sample depth in meters; calculated from CTD pressure. Values were added from the intermediate US GEOTRACES master file (see Processing Description).

meters
BTL_ISO_DateTime_UTC

Date and time (UTC) variable recorded at the bottle sampling time in ISO compliant format. Values were added from the intermediate US GEOTRACES master file (see Processing Description). This standard is based on ISO 8601:2004(E) and takes on the following form: 2009-08-30T14:05:00[.xx]Z (UTC time)

YYYY-MM-DDTHH:MM:SS[.xx][+/-TZ]


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Inductively Coupled Plasma Mass Spectrometer
Generic Instrument Name
Inductively Coupled Plasma Mass Spectrometer
Dataset-specific Description
Samples were analyzed by multi-collector ICP-MS or on an Element single-collector ICP-MS (see Acquisition Description).
Generic Instrument Description
An ICP Mass Spec is an instrument that passes nebulized samples into an inductively-coupled gas plasma (8-10000 K) where they are atomized and ionized. Ions of specific mass-to-charge ratios are quantified in a quadrupole mass spectrometer.


[ table of contents | back to top ]

Deployments

KN199-04

Website
Platform
R/V Knorr
Report
Start Date
2010-10-15
End Date
2010-11-04
Description
This cruise constitutes the first survey section as part of the U.S. participation in an international program named GEOTRACES. Funding: NSF OCE award 0926423 Science Objectives: To obtain state of the art trace metal and isotope measurements on a suite of samples taken on a mid-latitude zonal transect of the North Atlantic. In particular, sampling targeted the oxygen minimum zone extending off the west African coast near Mauritania, the TAG hydrothermal field, and the western boundary current system along Line W. For additional information, please refer to the GEOTRACES program Web site (https://www.geotraces.org/) for overall program objectives and a summary of properties measured. Science Activities include seawater sampling via GoFLO and Niskin carousels, in situ pumping (and filtration), CTDO2 and transmissometer sensors, underway pumped sampling of surface waters, and collection of aerosols and rain. Hydrography, CTD and nutrient measurements were supported by the Ocean Data Facility (J. Swift) at Scripps Institution of Oceanography and funded through NSF Facilities. They provided an additional CTD rosette system along with nephelometer and LADCP. A trace metal clean Go-Flo Rosette and winch were provided by the group at Old Dominion University (G. Cutter) along with a towed underway pumping system. Additional cruise information is available from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/KN199-04 Other Relevant Links: List of cruise participants: [ PDF ] Cruise track: JPEG image (from Woods Hole Oceanographic Institution, vessel operator) ADCP data are available from the Currents ADCP group at the University of Hawaii: KN199-04 ADCP

KN204-01

Website
Platform
R/V Knorr
Report
Start Date
2011-11-06
End Date
2011-12-11
Description
The US GEOTRACES North Atlantic cruise aboard the R/V Knorr completed the section between Lisbon and Woods Hole that began in October 2010 but was rescheduled for November-December 2011. The R/V Knorr made a brief stop in Bermuda to exchange samples and personnel before continuing across the basin. Scientists disembarked in Praia, Cape Verde, on 11 December. The cruise was identified as KN204-01A (first part before Bermuda) and KN204-01B (after the Bermuda stop). However, the official deployment name for this cruise is KN204-01 and includes both part A and B. Science activities included: ODF 30 liter rosette CTD casts, ODU Trace metal rosette CTD casts, McLane particulate pump casts, underway sampling with towed fish and sampling from the shipboard "uncontaminated" flow-through system. Full depth stations are shown in the accompanying figure (see below). Additional stations to sample for selected trace metals to a depth of 1000 m are not shown. Standard stations are shown in red (as are the ports) and "super" stations, with extra casts to provide large-volume samples for selected parameters, are shown in green. Station spacing is concentrated along the western margin to evaluate the transport of trace elements and isotopes by western boundary currents. Stations across the gyre will allow scientists to examine trace element supply by Saharan dust, while also contrasting trace element and isotope distributions in the oligotrophic gyre with conditions near biologically productive ocean margins, both in the west, to be sampled now, and within the eastern boundary upwelling system off Mauritania, sampled last year. Funding: The cruise was funded by NSF OCE awards 0926204, 0926433 and 0926659. Additional cruise information is available from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/KN204-01 Other Relevant Links: ADCP data are available from the Currents ADCP group at the University of Hawaii at the links below: KN204-01A (part 1 of 2011 cruise; Woods Hole, MA to Bermuda) KN204-01B (part 2 of 2011 cruise; Bermuda to Cape Verde)


[ table of contents | back to top ]

Project Information

U.S. GEOTRACES North Atlantic Transect (GA03) (U.S. GEOTRACES NAT)


Coverage: Subtropical western and eastern North Atlantic Ocean (GA03)


Much of this text appeared in an article published in OCB News, October 2008, by the OCB Project Office.

The first U.S. GEOTRACES Atlantic Section will be specifically centered around a sampling cruise to be carried out in the North Atlantic in 2010. Ed Boyle (MIT) and Bill Jenkins (WHOI) organized a three-day planning workshop that was held September 22-24, 2008 at the Woods Hole Oceanographic Institution. The main goal of the workshop, sponsored by the National Science Foundation and the U.S. GEOTRACES Scientific Steering Committee, was to design the implementation plan for the first U.S. GEOTRACES Atlantic Section. The primary cruise design motivation was to improve knowledge of the sources, sinks and internal cycling of Trace Elements and their Isotopes (TEIs) by studying their distributions along a section in the North Atlantic (Figure 1). The North Atlantic has the full suite of processes that affect TEIs, including strong meridional advection, boundary scavenging and source effects, aeolian deposition, and the salty Mediterranean Outflow. The North Atlantic is particularly important as it lies at the "origin" of the global Meridional Overturning Circulation.

It is well understood that many trace metals play important roles in biogeochemical processes and the carbon cycle, yet very little is known about their large-scale distributions and the regional scale processes that affect them. Recent advances in sampling and analytical techniques, along with advances in our understanding of their roles in enzymatic and catalytic processes in the open ocean provide a natural opportunity to make substantial advances in our understanding of these important elements. Moreover, we are motivated by the prospect of global change and the need to understand the present and future workings of the ocean's biogeochemistry. The GEOTRACES strategy is to measure a broad suite of TEIs to constrain the critical biogeochemical processes that influence their distributions. In addition to these "exotic" substances, more traditional properties, including macronutrients (at micromolar and nanomolar levels), CTD, bio-optical parameters, and carbon system characteristics will be measured. The cruise starts at Line W, a repeat hydrographic section southeast of Cape Cod, extends to Bermuda and subsequently through the North Atlantic oligotrophic subtropical gyre, then transects into the African coast in the northern limb of the coastal upwelling region. From there, the cruise goes northward into the Mediterranean outflow. The station locations shown on the map are for the "fulldepth TEI" stations, and constitute approximately half of the stations to be ultimately occupied.

Figure 1. The proposed 2010 Atlantic GEOTRACES cruise track plotted on dissolved oxygen at 400 m depth. Data from the World Ocean Atlas (Levitus et al., 2005) were plotted using Ocean Data View (courtesy Reiner Schlitzer). [click on the image to view a larger version]

Hydrography, CTD and nutrient measurements will be supported by the Ocean Data Facility (J. Swift) at Scripps Institution of Oceanography and funded through NSF Facilities. They will be providing an additional CTD rosette system along with nephelometer and LADCP. A trace metal clean Go-Flo Rosette and winch will be provided by the group at Old Dominion University (G. Cutter) along with a towed underway pumping system.

The North Atlantic Transect cruise began in 2010 with KN199 leg 4 (station sampling) and leg 5 (underway sampling only) (Figure 2).

KN199-04 Cruise Report (PDF)

Figure 2. The red line shows the cruise track for the first leg of the US Geotraces North Atlantic Transect on the R/V Knorr in October 2010.  The rest of the stations (beginning with 13) will be completed in October-December 2011 on the R/V Knorr (courtesy of Bill Jenkins, Chief Scientist, GNAT first leg). [click on the image to view a larger version]
Atlantic Transect Station location map

The section completion effort resumed again in November 2011 with KN204-01A,B (Figure 3).

KN204-01A,B Cruise Report (PDF)

Figure 3. Station locations occupied on the US Geotraces North Atlantic Transect on the R/V Knorr in November 2011.  [click on the image to view a larger version]
Atlantic Transect/Part 2 Station location map

Data from the North Atlantic Transect cruises are available under the Datasets heading below, and consensus values for the SAFe and North Atlantic GEOTRACES Reference Seawater Samples are available from the GEOTRACES Program Office: Standards and Reference Materials

ADCP data are available from the Currents ADCP group at the University of Hawaii at the links below:
KN199-04   (leg 1 of 2010 cruise; Lisbon to Cape Verde)
KN199-05   (leg 2 of 2010 cruise; Cape Verde to Charleston, NC)
KN204-01A (part 1 of 2011 cruise; Woods Hole, MA to Bermuda)
KN204-01B (part 2 of 2011 cruise; Bermuda to Cape Verde)



[ table of contents | back to top ]

Program Information

U.S. GEOTRACES (U.S. GEOTRACES)


Coverage: Global


GEOTRACES is a SCOR sponsored program; and funding for program infrastructure development is provided by the U.S. National Science Foundation.

GEOTRACES gained momentum following a special symposium, S02: Biogeochemical cycling of trace elements and isotopes in the ocean and applications to constrain contemporary marine processes (GEOSECS II), at a 2003 Goldschmidt meeting convened in Japan. The GEOSECS II acronym referred to the Geochemical Ocean Section Studies To determine full water column distributions of selected trace elements and isotopes, including their concentration, chemical speciation, and physical form, along a sufficient number of sections in each ocean basin to establish the principal relationships between these distributions and with more traditional hydrographic parameters;

* To evaluate the sources, sinks, and internal cycling of these species and thereby characterize more completely the physical, chemical and biological processes regulating their distributions, and the sensitivity of these processes to global change; and

* To understand the processes that control the concentrations of geochemical species used for proxies of the past environment, both in the water column and in the substrates that reflect the water column.

GEOTRACES will be global in scope, consisting of ocean sections complemented by regional process studies. Sections and process studies will combine fieldwork, laboratory experiments and modelling. Beyond realizing the scientific objectives identified above, a natural outcome of this work will be to build a community of marine scientists who understand the processes regulating trace element cycles sufficiently well to exploit this knowledge reliably in future interdisciplinary studies.

Expand "Projects" below for information about and data resulting from individual US GEOTRACES research projects.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]