VPR acquisition log sheets (pdf) from R/V Tioga TI715 in the Gulf of Maine from October 2013 (Gulf of Maine Pteropods project) Website: https://www.bco-dmo.org/dataset/472536 **Version**: final Version Date: 2013-12-03 #### **Project** » <u>Seasonal and Ontogenetic Effects of Ocean Acidification on Pteropods in the Gulf of Maine</u> (Gulf of Maine Pteropods) #### **Program** » <u>Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES): Ocean Acidification (formerly CRI-OA)</u> (SEES-OA) | Contributors | Affiliation | Role | |-----------------------|---|-----------------------------| | <u>Lawson, Gareth</u> | Woods Hole Oceanographic Institution (WHOI) | Lead Principal Investigator | | Maas, Amy | Woods Hole Oceanographic Institution (WHOI) | Principal Investigator | | Copley, Nancy | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager | #### **Table of Contents** - Dataset Description - Methods & Sampling - Data Files - Parameters - Instruments - Deployments - Project Information - Program Information - Funding ## **Dataset Description** Original hand-written log sheets for VPR casts recording initial conditions, date, time, location and observations. The Video Plankton Recorder is an underwater video microscope system designed to record images of plankton ranging in size from less than one half millimeter up to a few centimeters. A strobe light flashing at 20 times per second captures images at this rate. A program called AutoDeck reviews the images at about 15 frames per second and extracts Regions of Interest (ROIs) that may be plankton based on certain parameters such as brightness and sharpness (see Settings for ROI Extraction below). #### Methods & Sampling The VPR was used in order to describe the abundance and vertical distribution of plankton taxa. The VPR was deployed off the aft via the same winch as the CTD and MOCNESS. After TI668, a stand was adapted which allowed the VPR to be strapped onto the Tioga CTD for simultaneous sampling. The hard-drive was removed following each cast and the data downloaded. Quick visual scrutiny of the data in Autodeck was performed ship-board to look for any depths of high pteropod abundance; no such depths were evident in the VPR data based on this preliminary examination. See the cruise reports for the recommended settings (Click on Deployment links, below, then Deployment Report URL.) ## **Data Files** ## File **VPR_logs.csv**(Comma Separated Values (.csv), 122 bytes) MD5:1a7cc10caba729e9e15cbf7b76aa262b Primary data file for dataset ID 472536 [table of contents | back to top] ## **Parameters** | Parameter | Description | Units | |-----------|-----------------------|----------| | cruise_id | cruise identification | unitless | # [table of contents | back to top] ## Instruments | Dataset-
specific
Instrument
Name | VPR | |--|--| | Generic
Instrument
Name | Video Plankton Recorder | | Generic
Instrument
Description | The Video Plankton Recorder (VPR) is a video-microscope system used for imaging plankton and other particulate matter in the size range from a few micrometers to several centimeters. The VPR is essentially an underwater microscope. It consists of four video cameras (with magnifying optics) synchronized at 60 fields per second (fps) to a red-filtered 80 W xenon strobe (pulse duration = 1 microsecond). The current lens on each camera can be adjusted to provide a field of view between 5 mm and 10 cm. Use of higher magnification lenses is currently being explored for viewing protozoans (less than 1 micrometer resolution). The four cameras are set for concentric viewing fields so that a range of up to four magnifications can be viewed simultaneously, allowing a wide size range of plankton to be sampled. Depth of field is adjusted by the lens aperture setting, and the volume sampled in each video field ranges from about 1 ml to 1 liter, depending on lens settings. The cameras have been configured for stereoscopic viewing as well. A strobe on the other arm illuminates the imaged volume and flashes 60 times per second, producing 60 images per second of the particles and plankton in the water. The images are then saved internally on a computer hard disk and later plotted. Deployment: Most commonly, the VPR is mounted in a frame and lowered into the water from the stern of the ship. Sometimes, a CTD also is mounted next to the VPR to collect depth, temperature, and salinity information at the same time as each video image. The instrument is lowered down through the water to a maximum depth of 350 meters to generate a profile of plankton/particle abundance and taxon group along with temperature and salinity. In addition to the towed configuration for mapping plankton distributions, it is possible to deploy the VPR in a fixed position (on a mooring) for viewing plankton swimming behaviors in two or three dimensions. The VPR instrument system has been used in both configurations, and deployment on ROVs has been proposed. Th | ## **Deployments** #### **TI715** | Website | https://www.bco-dmo.org/deployment/472270 | | | |-------------|---|--|--| | Platform | R/V Tioga | | | | Report | http://bcodata.whoi.edu/GoME_Pteropods/cruise_reports/Tioga715_Cruise_Report_final.pdf | | | | Start Date | 2013-10-21 | | | | End Date | 2013-10-23 | | | | Description | The central goal of this cruise was to sample the carbonate chemistry profile of two sites in the GoME and to document the abundance and vertical distribution of the pteropod species Limacina retroversa. The long-term goal of this research is to understand forcings by climate, enhanced atmospheric CO2 levels, and coastal eutrophication on seasonal and inter-annual variability in carbonate chemistry of the Gulf of Maine and the associated implications to planktonic calcifiers, notably pteropods. The specific goals of this project are to: 1. Quantify seasonal variations of carbonate system parameters and buffer intensity in deep waters of the Gulf of Maine in order to evaluate the sensitivity of these waters in response to acidification due to anthropogenic forcing, such as increase in atmospheric CO2, freshening of the GoME (decrease in total alkalinity) and increases in water-column respiration due to eutrophication. We will test the hypotheses that deep waters of the GoME are already seasonally under-saturated with respect to aragonite saturation state, and that these waters have low buffer intensity compared to overlying water, which would cause them to be more susceptible to acidification pressures and to reach critical ecological thresholds (OA < 1) more readily. 2. Quantify seasonal patterns in the abundance of the pteropod Limacina retroversa and its vertical distribution relative to concurrent measurements of water column chemical properties, testing the hypothesis that this species is absent in the acidic waters of the near-bottom nepheloid layer. The specific goals of this particular cruise were to: 1. Measure the carbonate chemistry of the water column at multiple sites in the Gulf of Maine, targeting regions where there the depth is greatest and the deep waters are mostly likely to be undersaturated 2. Measure the carbonate chemistry in the nephloid layer 3. Catch pteropods with a vertically stratified net system to quantify their size class, abundance and vertical distribution in the context of the | | | ## [table of contents | back to top] ## **Project Information** Seasonal and Ontogenetic Effects of Ocean Acidification on Pteropods in the Gulf of Maine (Gulf of Maine Pteropods) Website: http://www.whoi.edu/people/glawson/ Coverage: Gulf of Maine This project will involve a series of five short cruises in 2013 and 2014, during which a variety of hydrographic, chemical, and biological data and samples will be collected, as well as a number of laboratory experiments examining pteropod physiology and gene expression. From NSF proposal abstract: Dissolution of excess anthropogenic CO2 into the ocean is causing the marine environment to decrease in pH. This "ocean acidification" is predicted to threaten a broad variety of marine organisms, particularly calcifying animals such as the thecosome (i.e., shelled) pteropods. These pelagic gastropods form an aragonite shell, are prey for a number of commercially important fish, and are significant contributors to carbon biogeochemistry. Their ecosystem importance, abundance, and sensitivity to dissolution position them as an important group for investigating the impacts of acidification. Our understanding of the effect of high CO2 on pteropods and the pelagic ecosystem, however, is limited primarily to short-term studies of adult calcification and respiration response in the polar ecosystems. There have been no seasonal studies of sensitivity and our understanding of the effect of CO2 on pteropod early life stages is limited. Limacina retroversa is a particularly abundant thecosome pteropod in the North Atlantic, where it is prey for a number of fisheries species and other top predators. This species is also the most common pteropod in the Gulf of Maine (GoM) where it is present year round. L. retroversa thus offers the prospect of a useful model pteropod species, given both its ecological importance and its abundance in readily accessible waters. The investigators will conduct a series of short cruises to sample L. retroversa on a seasonal basis from local waters of the GoM near Cape Cod. The carbonate chemistry of the GoM fluctuates seasonally, providing the opportunity to assess the response of wild caught pteropods to natural changes in CO2. By characterizing the carbonate chemistry of the water column and measuring the metabolic rate, shell quality, and gene expression of pteropods throughout the year, the researchers will achieve a time series of pteropod sensitivity to CO2. Subsequently, using experimental manipulations the investigators will explore the effect of seasonal acclimation on pteropod response to short- and medium-term exposure to enhanced CO2. Pteropods frequently lay eggs in captivity. and at WHOI there is institutional expertise in maintaining these individuals in the laboratory. Building on these strengths, the researchers will also study the effect of CO2 on embryonic and larval development in L. retroversa. These earliest life-stages of marine calcifiers are thought to be especially sensitive since initial shell precipitation and the highly energetic processes of growth and development are impeded by CO2 exposure. They will also document mortality, shell production, abnormality, and developmental rate of clutches of pteropod embryos exposed to increased CO2. Intellectual Merit: Thecosome pteropods are an abundant group of calcifying zooplankters that have been chronically understudied, particularly in temperate regions. Due to its accessibility and ecological importance, L. retroversa can be developed as a valuable model, interesting both as the dominant pteropod in the commercially-important GoM region and also an abundant pteropod in the temperate waters of the North Atlantic. The goal of this research is to augment our knowledge of the distribution of L. retroversa, to attain an understanding of their seasonal sensitivity to natural variability in CO2, and to see how this exposure impacts responses to both short- and medium-term CO2 exposure. Using powerful transcriptomic technologies, the research will transform our understanding of this group by investigating the molecular mechanisms of response in L. retroversa to both seasonality and varying durations and intensities of acidification, contextualized by ecosystem- and organism-level metrics. Furthermore the study will examine the effect of CO2 on the eggs of pteropods for the first time, providing insight into their sensitivity to an acidifying environment. ## [table of contents | back to top] ## **Program Information** Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES): Ocean Acidification (formerly CRI-OA) (SEES-OA) Website: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503477 Coverage: global NSF Climate Research Investment (CRI) activities that were initiated in 2010 are now included under Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES). SEES is a portfolio of activities that highlights NSF's unique role in helping society address the challenge(s) of achieving sustainability. Detailed information about the SEES program is available from NSF (https://www.nsf.gov/funding/pgm_summ.jsp? pims_id=504707). In recognition of the need for basic research concerning the nature, extent and impact of ocean acidification on oceanic environments in the past, present and future, the goal of the SEES: OA program is to understand (a) the chemistry and physical chemistry of ocean acidification; (b) how ocean acidification interacts with processes at the organismal level; and (c) how the earth system history informs our understanding of the effects of ocean acidification on the present day and future ocean. #### Solicitations issued under this program: NSF 10-530, FY 2010-FY2011 NSF 12-500, FY 2012 NSF 12-600, FY 2013 NSF 13-586, FY 2014 NSF 13-586 was the final solicitation that will be released for this program. ## PI Meetings: <u>1st U.S. Ocean Acidification PI Meeting</u>(March 22-24, 2011, Woods Hole, MA) <u>2nd U.S. Ocean Acidification PI Meeting</u>(Sept. 18-20, 2013, Washington, DC) 3rd U.S. Ocean Acidification PI Meeting (June 9-11, 2015, Woods Hole, MA – Tentative) #### NSF media releases for the Ocean Acidification Program: Press Release 10-186 NSF Awards Grants to Study Effects of Ocean Acidification <u>Discovery Blue Mussels "Hang On" Along Rocky Shores: For How Long?</u> <u>Discovery nsf.gov - National Science Foundation (NSF) Discoveries - Trouble in Paradise: Ocean Acidification This Way Comes - US National Science Foundation (NSF)</u> <u>Press Release 12-179 nsf.gov - National Science Foundation (NSF) News - Ocean Acidification: Finding New Answers Through National Science Foundation Research Grants - US National Science Foundation (NSF)</u> Press Release 13-102 World Oceans Month Brings Mixed News for Oysters <u>Press Release 13-108 nsf.gov - National Science Foundation (NSF) News - Natural Underwater Springs Show</u> How Coral Reefs Respond to Ocean Acidification - US National Science Foundation (NSF) <u>Press Release 13-148 Ocean acidification: Making new discoveries through National Science Foundation research grants</u> <u>Press Release 13-148 - Video nsf.gov - News - Video - NSF Ocean Sciences Division Director David Conover answers questions about ocean acidification. - US National Science Foundation (NSF)</u> <u>Press Release 14-010 nsf.gov - National Science Foundation (NSF) News - Palau's coral reefs surprisingly resistant to ocean acidification - US National Science Foundation (NSF)</u> <u>Press Release 14-116 nsf.gov - National Science Foundation (NSF) News - Ocean Acidification: NSF awards</u> \$11.4 million in new grants to study effects on marine ecosystems - US National Science Foundation (NSF) [table of contents | back to top] ## **Funding** | Funding Source | Award | |--|-------------| | NSF Division of Ocean Sciences (NSF OCE) | OCE-1316040 | [table of contents | back to top]