Palatability of Galaxaura extract on Padina to herbivores from in the Viti Levu, Fiji from 2011 (Killer Seaweeds project)

Website: https://www.bco-dmo.org/dataset/488812
Version: 2014-01-22

Project
» Killer Seaweeds: Allelopathy against Fijian Corals (Killer Seaweeds)
ContributorsAffiliationRole
Hay, MarkGeorgia Institute of Technology (GA Tech)Principal Investigator
Rasher, Douglas B.Georgia Institute of Technology (GA Tech)Student
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Methods & Sampling

To test the hypothesis that an increase in the palatability of Galaxaura following competition was owing to changes in antiherbivore defensive chemistry, we tested the deterrent effects of hydrophobic extracts from treatment versus control Galaxaura against herbivorous fishes in the field. These extracts were the same as those used to assess induction of allelopathy in Galaxaura. To test extract deterrence against herbivorous surgeonfish (Naso lituratus and Naso unicornis), we re-suspended each extract in ether, coated each at a natural volumetric concentration on five blades (a 2.04+0.03 ml volumetric equivalent, mean+ s.e.; n = 10) of blotted dry and pre-weighed Padina boryana (a preferred prey of N. lituratus and N. unicornis [30], hereafter ‘Padina’), allowed the ether to evaporate, inserted each set of blades 5 cm apart on their own 60 cm section of 3-stranded rope (n = 12 ropes extract-1), and deployed pairs of treatment and control ropes in the field (as described earlier).

Because feeding on Padina was rapid (approx. 10 min pair-1), we deployed one pair at a time, monitored feeding and recollected pairs when approximately 50% of the total biomass within each pair was consumed. We observed only N. lituratus and N. unicornis feeding on the Padina. Following assays, seaweeds were bagged in situ and returned to the laboratory, where they were blotted dry and re-weighed. Given the duration of each assay and our visual assessment that seaweed tissues were not being lost to processes other than herbivory, we did not deploy caged controls.

Relevant References:

* Rasher DB and ME Hay. "Competition induces allelopathy but suppresses growth and anti-herbivore defense in a chemically rich seaweed".  Proceedings of the Royal Society: B-Biological Sciences.  vol. 281 no. 1777 20132615, 2014. (http://dx.doi.org/10.1098/rspb.2013.2615).

Rasher DB, Stout EP, Engel S, Kubanek J, and ME Hay. "Macroalgal terpenes function as allelopathic agents against reef corals", Proceedings of the National Academy of Sciences, v. 108, 2011, p. 17726.

Beattie AJ, ME Hay, B Magnusson, R de Nys, J Smeathers, JFV Vincent. "Ecology and bioprospecting," Austral Ecology, v.36, 2011, p. 341.

Rasher DB and ME Hay. "Seaweed allelopathy degrades the resilience and function of coral reefs," Communicative and Integrative Biology, v.3, 2010.

Hay ME, Rasher DB. "Corals in crisis," The Scientist, v.24, 2010, p. 42.

Hay ME and DB Rasher. "Coral reefs in crisis: reversing the biotic death spiral," Faculty 1000 Biology Reports 2010, v.2, 2010.

Rasher DB and ME Hay. "Chemically rich seaweeds poison corals when not controlled by herbivores", Proceedings of the National Academy of Sciences, v.107, 2010, p. 9683.


[ table of contents | back to top ]

Data Files

File
extract_palatability.csv
(Comma Separated Values (.csv), 1.98 KB)
MD5:06d2ee90ed9676ebbbb2d4162de70fe3
Primary data file for dataset ID 488812

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
lat

latitude; north is positive

decimal degrees
lon

longitude; east is positive

decimal degrees
date_begin

date deployed

mm/dd/yyyy
date_end

date retrieved

mm/dd/yyyy
sample

pair identification number

unitless
Galaxaura_extract

treatment = extract of treatment Galaxaura on Padina; control = extract of control Galaxaura on Padina

unitless
mass_initial_Padina

initial mass of Padina

grams
mass_final_Padina

final mass of Padina

grams
amt_consumed_g

amount of Padina consumed; wet weight

grams
amt_consumed_pcent

percent Padina consumed

percent

[ table of contents | back to top ]

Deployments

Fiji_2011

Website
Platform
Hay_GaTech
Start Date
2010-11-01
End Date
2012-01-01
Description
Studies for this deployment were conducted: November 2010 through February 2011 and between November 2011 and January 2012 on shallow (~1 m below the surface at low tide, equal or shallower than 2 m at high tide), intertidal fringing reefs platforms in Villages of Votua, Vatu-o-lalai and Namada, Coral Coast Viti Levu, Fiji. May–December 2011 on an approximately1.5-2.5 m deep reef flat within a no-take marine reserve at Votua Village, Viti Levu, Fiji.


[ table of contents | back to top ]

Project Information

Killer Seaweeds: Allelopathy against Fijian Corals (Killer Seaweeds)

Coverage: Viti Levu, Fiji (18º13.049’S, 177º42.968’E)


Extracted from the NSF award abstract:

Coral reefs are in dramatic global decline, with reefs commonly converting from species-rich and topographically-complex communities dominated by corals to species- poor and topographically-simplified communities dominated by seaweeds. These phase-shifts result in fundamental loss of ecosystem function. Despite debate about whether coral-to-algal transitions are commonly a primary cause, or simply a consequence, of coral mortality, rigorous field investigation of seaweed-coral competition has received limited attention. There is limited information on how the outcome of seaweed-coral competition varies among species or the relative importance of different competitive mechanisms in facilitating seaweed dominance. In an effort to address this topic, the PI will conduct field experiments in the tropical South Pacific (Fiji) to determine the effects of seaweeds on corals when in direct contact, which seaweeds are most damaging to corals, the role allelopathic lipids that are transferred via contact in producing these effects, the identity and surface concentrations of these metabolites, and the dynamic nature of seaweed metabolite production and coral response following contact. The herbivorous fishes most responsible for controlling allelopathic seaweeds will be identified, the roles of seaweed metabolites in allelopathy vs herbivore deterrence will be studied, and the potential for better managing and conserving critical reef herbivores so as to slow or reverse conversion of coral reef to seaweed meadows will be examined.

Preliminary results indicate that seaweeds may commonly damage corals via lipid- soluble allelochemicals. Such chemically-mediated interactions could kill or damage adult corals and produce the suppression of coral fecundity and recruitment noted by previous investigators and could precipitate positive feedback mechanisms making reef recovery increasingly unlikely as seaweed abundance increases. Chemically-mediated seaweed-coral competition may play a critical role in the degradation of present-day coral reefs. Increasing information on which seaweeds are most aggressive to corals and which herbivores best limit these seaweeds may prove useful in better managing reefs to facilitate resilience and possible recovery despite threats of global-scale stresses. Fiji is well positioned to rapidly use findings from this project for better management of reef resources because it has already erected >260 MPAs, Fijian villagers have already bought-in to the value of MPAs, and the Fiji Locally-Managed Marine Area (FLMMA) Network is well organized to get information to villagers in a culturally sensitive and useful manner.

The broader impacts of this project are far reaching. The project provides training opportunities for 2-2.5 Ph.D students and 1 undergraduate student each year in the interdisciplinary areas of marine ecology, marine conservation, and marine chemical ecology. Findings from this project will be immediately integrated into classes at Ga Tech and made available throughout Fiji via a foundation and web site that have already set-up to support marine conservation efforts in Fiji and marine education efforts both within Fiji and internationally. Business and community leaders from Atlanta (via Rotary International Service efforts) have been recruited to help organize and fund community service and outreach projects in Fiji -- several of which are likely to involve marine conservation and education based in part on these efforts there. Media outlets (National Geographic, NPR, Animal Planet, Audubon Magazine, etc.) and local Rotary clubs will be used to better disseminate these discoveries to the public.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Rasher DB, Stout EP, Engel S, Kubanek J, and ME Hay. "Macroalgal terpenes function as allelopathic agents against reef corals", Proceedings of the National Academy of Sciences, v. 108, 2011, p. 17726.

Beattie AJ, ME Hay, B Magnusson, R de Nys, J Smeathers, JFV Vincent. "Ecology and bioprospecting," Austral Ecology, v.36, 2011, p. 341.

Rasher DB and ME Hay. "Seaweed allelopathy degrades the resilience and function of coral reefs," Communicative and Integrative Biology, v.3, 2010.

Hay ME, Rasher DB. "Corals in crisis," The Scientist, v.24, 2010, p. 42.

Hay ME and DB Rasher. "Coral reefs in crisis: reversing the biotic death spiral," Faculty 1000 Biology Reports 2010, v.2, 2010.

Rasher DB and ME Hay. "Chemically rich seaweeds poison corals when not controlled by herbivores", Proceedings of the National Academy of Sciences, v.107, 2010, p. 9683.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]