pH data from Virginia Aquarium Climate Change Facility, Virginia Beach VA; 2011-2015 (Impact of Climate on Eelgrass project)

Website: https://www.bco-dmo.org/dataset/504885
Version: 13 March 2015
Version Date: 2015-03-13

Project
» Impact of Climate Warming and Ocean Carbonation on Eelgrass (Zostera marina L.) (Impact of Climate on Eelgrass)
ContributorsAffiliationRole
Zimmerman, Richard C.Old Dominion University (ODU)Principal Investigator, Contact
Hill, Victoria J.Old Dominion University (ODU)Co-Principal Investigator
Swingle, W. MarkVirginia AquariumCo-Principal Investigator
Ruble, DavidOld Dominion University (ODU)Contact
Gegg, Stephen R.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

Eelgrass Climate Impacts
Experimental conditions, growth and survival of eelgrass
pH Data - Date, Tank pH readings


Methods & Sampling

pH data were recorded using Cole Parmer 350 pH/ORP controller units and Oakton epoxy body pH electrodes (UX-35801-00) calibrated weekly to a precision of 0.01 pH unit using NBS buffers. Output signals (4-20 mA) from the pH controllers were recorded at 10 minute intervals using the same NI data logger system and LabView software system used for the temperature data.


Data Processing Description

pH - Mean daily values of pH for each tank were calculated from the 10 minute records and provided in this spreadsheet. 10 minute records of the processed data, along with raw data files are available from the PIs, upon request.

BCO-DMO Processing Notes
- Generated from original file: "BORG_SeaGrass_Full_data_Records.xlsx" Sheet: "pH" contributed by David Ruble
- Approx Lat/Lon of Virginia Aquarium Climate Change Facility appended to enable data discovery in MapServer
- Parameters modified to conform to BCO-DMO parameter naming conventions (Choosing a Parameter Name)


[ table of contents | back to top ]

Data Files

File
pH_Data.csv
(Comma Separated Values (.csv), 71.34 KB)
MD5:c494e00e521b077a09634285bb0b50f4
Primary data file for dataset ID 504885

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
Lab_Id

Lab Id – Lab identifier where experiments were conducted

text
Lat

Approximate Latitude Position of Lab; South is negative

decimal degrees
Lon

Approximate Longitude Position of Lab; West is negative

decimal degrees
date

Date

yyyymmdd
tank01_pH6point5

tank01 pH6.5

pH
tank02_pH6point5

tank02 pH6.5

pH
tank03_pH6point0

tank03 pH6.0

pH
tank04_pH6point0

tank04 pH6.0

pH
tank05_pH7point5

tank05 pH7.5

pH
tank06_pH7point5

tank06 pH7.5

pH
tank07_pH8point0

tank07 pH8.0

pH
tank08_pH8point0

tank08 pH8.0

pH
tank09_pH7point0

tank09 pH7.0

pH
tank10_pH7point0

tank10 pH7.0

pH
tank11_pH7point5

tank11 pH7.5

pH
tank12_pH7point5

tank12 pH7.5

pH
tank13_pH8point0

tank13 pH8.0

pH
tank14_pH8point0

tank14 pH8.0

pH
tank15_pH6point0

tank15 pH6.0

pH
tank16_pH6point0

tank16 pH6.0

pH
tank17_pH7point0

tank17 pH7.0

pH
tank18_pH7point0

tank18 pH7.0

pH
tank19_pH6point5

tank19 pH6.5

pH
tank20_pH6point5

tank20 pH6.5

pH


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Cole Parmer 350 pH/ORP controller units
Generic Instrument Name
pH Sensor
Dataset-specific Description
pH data were recorded using Cole Parmer 350 pH/ORP controller units and Oakton epoxy body pH electrodes (UX-35801-00) calibrated weekly to a precision of 0.01 pH unit using NBS buffers. Output signals (4-20 mA) from the pH controllers were recorded at 10 minute intervals using the same NI data logger system and LabView software system used for the temperature data.
Generic Instrument Description
An instrument that measures the hydrogen ion activity in solutions. The overall concentration of hydrogen ions is inversely related to its pH.  The pH scale ranges from 0 to 14 and indicates whether acidic (more H+) or basic (less H+). 


[ table of contents | back to top ]

Deployments

lab_Virginia_Aquarium_Climate_Change_Facility

Website
Platform
Virginia Aquarium Climate Change Facility
Start Date
2011-02-01
End Date
2015-01-31
Description
Laboratory experiments conducted from 1 May 2013 to 31 Jan 2013 at Virginia Aquarium Climate Change Facility, Virginia Beach VA


[ table of contents | back to top ]

Project Information

Impact of Climate Warming and Ocean Carbonation on Eelgrass (Zostera marina L.) (Impact of Climate on Eelgrass)


Coverage: Virginia Beach, VA and Southern Chesapeake Bay region 36° 49’ 32.84” N 75° 58’ 58.17” W


Project abstract from the NSF proposal:
The past few decades have accumulated mounting evidence of profound anthropogenic effects on fundamental biogeochemical processes across the planet, especially in coastal environments that support a diverse array of highly productive ecosystems including coral reefs, seagrass meadows, and estuaries. The ecological significance of seagrasses is largely due to the remarkable degree of adaptation they exhibit to a submerged aquatic existence. Despite numerous successful adaptations, however, seagrasses have high light requirements that make them vulnerable to anthropogenic disturbances. The paradoxical vulnerability results largely from their high reliance on dissolved aqueous CO2 for photosynthesis. The potential for rising atmospheric CO2 concentrations to have significant warming impacts on the global climate has long been recognized, but the potential impacts of the "other CO2 problem", also known as ocean acidification, have only recently begun to be appreciated. As with other impacts of climate change, the increased concentrations of dissolved aqueous CO2 [CO2 (aq)] in the oceans of the world will elicit both negative and positive responses among organisms, ultimately potentiating ecological losers and winners. This project will explore the response of eelgrass to increased CO2 (aq) within the context of a warming coastal ocean using a combination of manipulative experiments, physiological/biochemical investigations and mathematical modeling. The investigators hypothesize that rising CO2(aq) will increase the high temperature tolerance of plants by improving the Q10 response of photosynthesis relative to respiration, thereby leading to higher growth rates, improved survival of vegetative shoots at high temperature, and even flowering output and seed production. This project will investigate the key relationships between environmental parameters that have both negative (ocean warming) and positive (ocean carbonation) impacts on the light requirements and dynamics of carbon balance in these critically important marine angiosperms. By focusing on Chesapeake populations growing near the southern limit of eelgrass distribution on the Atlantic coast, the investigators will gain predictive insight into how climate change may alter the geographic distribution of this critically important species in other coastal environments that may be subjected to less temperature stress but similar levels of ocean carbonation.

Objectives: The overall goal of the proposed research will be to develop a predictive mechanistic understanding of the simultaneous impacts of water temperature, [CO2(aq)] and [HCO3-] on the photosynthetic metabolism, vegetative growth and reproductive success of Zostera marina L. We will address the following questions, (1) To what extent is the upper thermal limit of eelgrass controlled by CO2(aq) availability, (2) Will prolonged CO2(aq) enrichment affect the ability of eelgrass to utilize HCO3- for photosynthesis, (3) Does prolonged CO2(aq) enrichment increase seed production and viability, and (4) Does CO2(aq) enrichment affect nutritional quality of seagrass tissue, particularly C:N ratios and protein content?

These experiments will be carried out at an experimental CO2(aq) enrichment facility which is being constructed at the Virginia Aquarium & Marine Science Center, adjacent to Owl Creek and Rudee Inlet, in Virginia Beach, VA.

Data Inventory

1) Weather and hydrographic data for Owl Creek Experimental Facility. Metadata and time series observations of irradiance, water temperature, pH, salinity, alkalinity, CO2 and dissolved nutrients will be posted on our web site, and final version data will be supplied to NODC for permanent archive.
2) Experimental metadata from the tanks (pH, temperature, eelgrass abundance and survival, growth rates, metabolic rates, etc.) will also be posted on our website listed above. Final data will be supplied to NODC and/or other databases as appropriate and as they become available.

Project data will also be contributed to thematic databases, including SeaBASS operated by NASA, WOOD operated by ONR, as well as NODC.

Preliminary results may be posted at the group's Web site hosted at ODU:
http://sci.odu.edu/oceanography/directory/faculty/zimmerman/researchpage/index.shtml



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]