Contributors | Affiliation | Role |
---|---|---|
Van Dover, Cindy | Duke University Department of Biology (Duke - Bio) | Chief Scientist |
Copley, Nancy | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Control point navigation from R2R: http://www.rvdata.us/catalog/AT21-02
File |
---|
AT2102_cruisetrack.csv (Comma Separated Values (.csv), 4.06 KB) MD5:d16b5e7291bd83a85ff414209d467a8a Primary data file for dataset ID 536061 |
Parameter | Description | Units |
date | Date | YYYY-MM-DD |
time | Time | HH:MM:SS |
lat | Latitude (South is negative) | decimal degrees |
lon | Longitude (West is negative) | decimal degrees |
Dataset-specific Instrument Name | GPS |
Generic Instrument Name | Global Positioning System Receiver |
Generic Instrument Description | The Global Positioning System (GPS) is a U.S. space-based radionavigation system that provides reliable positioning, navigation, and timing services to civilian users on a continuous worldwide basis. The U.S. Air Force develops, maintains, and operates the space and control segments of the NAVSTAR GPS transmitter system. Ships use a variety of receivers (e.g. Trimble and Ashtech) to interpret the GPS signal and determine accurate latitude and longitude. |
Website | |
Platform | R/V Atlantis |
Report | |
Start Date | 2012-06-01 |
End Date | 2012-06-17 |
Description | Cruise information and original data are available from the NSF R2R data catalog.
http://www.whoi.edu/cruiseplanning/synopsis.do?id=1942
The primary objective of the SeepC Project is to advance our general knowledge of connectivity in the deep sea using taxa found at seeps as model systems. The focus is on species and processes occurring in the Intra-American Sea (including the Caribbean, Gulf of Mexico, and eastern seaboard of the US), with attention to oceanographic circulation, life histories, and genetics.
Science objectives (from the WHOI Cruise Planning Synopsis):
Mooring recoveries and sampling at 3 Barbados seep sites (El Pilar, Orenoque A, Orenoque B) plus MOCNESS tows and some mapping (multibeam, CHIRP). We may add sample sites if we are able to undertake an advance SENTRY survey in the region (pending request). Our aim would be to add new sites separated by as much as 150-200 km max along a depth gradient and along an isobath. Use of SENTRY would allow us to undertake precision sampling of known sites, 1 to 1.5 days per station at each of 6 to 8 seep stations. This is part of the Seep Connectivity Project funded by NSF to investigate historical and contemporary linkages among Barbados, Gulf of Mexico, and Blake Ridge seep species.
Activities at each site:
1) Sub-bottom profiling to locate seep areas
2) MOCNESS tows for larval sampling
3) Mooring recoveries (current meter, 2 sediment/larval traps per mooring)
4) Intensive sampling of seep fauna for genetic and reproduction studies |
This project will evaluate connectivity on spatial scales that match those at which vent systems are being studied (3500 km), with a set of nested seeps (within the Barbados system) within which connectivity can be explored at more local spatial scales (30 to 130 km), and with species that span depth (600 m to 3600 m) and geographic ranges (30 km to 3500 km) and that have diverse life-history characteristics. Five deep-sea seep systems in the Intra- American Sea (IAS) are targeted: Blake Ridge, Florida Escarpment, Alaminos Canyon, Brine Pool, Barbados (El Pilar, Orenoque A, Orenoque B). The primary objective is to advance our general knowledge of connectivity in the deep sea. The focus is on species and processes occurring in the IAS, with attention to oceanographic circulation, life histories, and genetics. Questions that apply in shallow-water systems motivate this study:
1. What phylogeographic breaks occur in the system? It is important to distinguish between phylogeographic history and connectivity. A phylogeographic break with no shared alleles between populations implies a long history of isolation or possibly cryptic speciation.
2. Are populations connected by ongoing migration? This is the fundamental question about connectivity and the scale of genetic variation in marine species with planktonic larvae.
3. What biophysical processes underlie observed connectivities? Biological processes (e.g., larval distributions in the water column, timing of reproduction, and planktonic larval duration) and physical processes of transport and dispersion interact to determine connectivity.
The oceanographic model for the IAS will be improved and coupled to a Lagrangian larval transport model. The field program includes time-series sampling of larvae at seeps with records of current velocities, water column sampling to determine larval distribution potential, shipboard studies of larval biology and behavior, and sampling of benthic target species. Phylogenetic and population genetic tools will be used to explore historical and contemporary gene flow. Iterative interactions among the science teams will advance our understanding of connectivity in the deep sea and to develop effective and best methods for hypothesis testing under the constraints of working in a relatively inaccessible environment. Since their discovery, deep-sea chemosynthetic ecosystems have been novel systems within which to test the generality of paradigms developed for shallow-water species. This study will explore scale-dependent biodiversity and recruitment dynamics in deep-sea seep communities, and will identify key factors underlying population persistence and maintenance of biodiversity in these patchy systems.
Google Earth map showing positions of stations, CTD, XBT, multibeam locations (KMZ file dlownload)
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |