Experimental results describing if sonication is needed for chlorophyll extraction by copepods in the San Francisco estuary conducted during 2013

Website: <u>https://www.bco-dmo.org/dataset/546486</u> Data Type: experimental Version: 2015-01-15

Project

» Feeding and food limitation in copepod nauplii, the neglected life stage (food limitation in copepod nauplii)

Contributors	Affiliation	Role
Kimmerer, William	San Francisco State University (SFSU)	Principal Investigator
<u>Cohen, Sarah</u>	San Francisco State University (SFSU)	Co-Principal Investigator
<u>Copley, Nancy</u>	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Table of Contents

- Dataset Description
 - <u>Methods & Sampling</u>
 - Data Processing Description
- Data Files
- <u>Parameters</u>
- Instruments
- Deployments
- Project Information
- <u>Funding</u>

Dataset Description

We examined whether sonication was necessary for efficient extraction of chlorophyll (Mackas and Bohrer 1976).

Related Reference:

Vogt, R.A., T.R. Ignoffo, L.J. Sullivan, J. Herndon, J.H. Stillman, and W. Kimmerer. 2013. Feeding capabilities and limitations in the nauplii of two pelagic estuarine copepods, *Pseudodiaptomus marinus* and *Oithona davisae*. Limnology and Oceanography 58: 2145-2157.

Methods & Sampling

Twenty-seven adult female *Pseudodiaptomus marinus* were allowed to depurate for 3 h, then incubated with 500 μ g C L-1 of *Tetraselmis suecica* for 30 min. Samples were prepared for gut pigment analysis as in Vogt (2013). Nine samples were sonicated using a Virtis[©] VirSonic 100 ultrasonic probe with the dial set to medium, using five 1 second pulses. Nine samples were daubed briefly with the end of the probe but not sonicated, to control for possible loss of liquid to the probe, and the remaining nine were not sonicated. Fluorescence measured as in Vogt (2013) showed no difference among treatments (ANOVA, p=0.5), so we extracted all samples without sonication.

Data Processing Description

Raw data was plotted to determine gut fluorescence in raw units, subtracting background fluorescence from copepods with empty guts (background).

BCO-DMO Processing:

- added conventional header with dataset name, PI name, version date, reference information
- renamed parameters to BCO-DMO standard

[table of contents | back to top]

Data Files

File

3c_sonicate.csv(Comma Separated Values (.csv), 273 bytes) MD5:79c4e52104630a52c04a26a345c1b953

Primary data file for dataset ID 546486

[table of contents | back to top]

Parameters

Parameter	Description	Units
replicate	replicate number	unitless
fluor_sonic	fluorescence of sonicated samples	relative fluorescence units
fluor_probe	fluorescence of samples manually daubed with sonicator probe but not sonicated	relative fluorescence units
fluor_no_soni	fluor_no_soni fluorescence of non-sonicated samples	
fluor_blank	fluorescence of blank control samples	relative fluorescence units

[table of contents | back to top]

Instruments

Dataset- specific Instrument Name	Fluorometer
Generic Instrument Name	Fluorometer
Dataset- specific Description	Turner 10AU
	A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ.

Dataset- specific Instrument Name	
Generic Instrument Name	plate reader
Dataset- specific Description	Tecan Infinite F200 or Biotek Synergy 2 microplate reader was used for each analysis. Each microplate reader contained a 430/20 EX, 680/20 EMfilter pair for ChI a.
	Plate readers (also known as microplate readers) are laboratory instruments designed to detect biological, chemical or physical events of samples in microtiter plates. They are widely used in research, drug discovery, bioassay validation, quality control and manufacturing processes in the pharmaceutical and biotechnological industry and academic organizations. Sample reactions can be assayed in 6-1536 well format microtiter plates. The most common microplate format used in academic research laboratories or clinical diagnostic laboratories is 96-well (8 by 12 matrix) with a typical reaction volume between 100 and 200 uL per well. Higher density microplates (384- or 1536-well microplates) are typically used for screening applications, when throughput (number of samples per day processed) and assay cost per sample become critical parameters, with a typical assay volume between 5 and 50 μ L per well. Common detection modes for microplate assays are absorbance, fluorescence intensity, luminescence, time-resolved fluorescence, and fluorescence polarization. From: http://en.wikipedia.org/wiki/Plate_reader , 2014-09-0-23.

Dataset-specific Instrument Name	Spectrophotometer
Generic Instrument Name	Spectrophotometer
Dataset-specific Description	Agilent 8453 spectrophotometer (Agilent Technologies)
Generic Instrument Description	An instrument used to measure the relative absorption of electromagnetic radiation of different wavelengths in the near infra-red, visible and ultraviolet wavebands by samples.

[table of contents | back to top]

Deployments

Kimmerer_2013

Website	https://www.bco-dmo.org/deployment/546436
Platform	SFSU RTC
Start Date	2009-09-01
End Date	2014-08-31
Description	Copepod feeding studies

[table of contents | back to top]

Project Information

Feeding and food limitation in copepod nauplii, the neglected life stage (food limitation in copepod nauplii)

This project will investigate feeding by copepod nauplius larvae, the most abundant metazoans in the sea. It will answer three questions: 1) How does food selection by adults and nauplii differ when they are fed multiple prey species in the laboratory? 2) How does food selection by adults and nauplii differ when they are feeding on natural prey assemblages? and, 3) How do growth, development, and survival differ between copepodites and nauplii when their growth is food limited? Comparative experiments and field-based measurements will contrast the food consumed, and the effects of food limitation, between nauplii and later life stages. This contrast will include attributes of food such as size, taxon, and motility, and will include experiments with cultured prey offered singly or in a mixture, and natural prey, and apply genetic techniques to determine prey consumption by a predatory copepod. Copepods will be collected from the San Francisco Estuary, with four species selected for experiments to span taxonomic groups, sizes, salinity ranges, and general feeding behavior. A variety of techniques will be applied to account for the inevitable biases and limitations of each; all but one have previously been applied in our laboratories. These will include laboratory feeding experiments using cultured prev individually and in mixtures, and experiments using natural prev. Consumption of prev in experimental bottles will be measured as chlorophyll concentration and through particle counts by microscopy and flow cytometry. Radioactively labeled prey will be used in short incubations to determine feeding on particular prey types. Samples from the field will be examined for gut fluorescence. Separate experiments will determine how nauplii and copepodites survive and grow at different concentrations of food. Investigations of feeding by a predatory copepod (Tortanus dextrilobatus) will use molecular techniques to identify mitochondrial and nuclear DNA from diverse suspected prey species. Specific primers will be developed for common zooplankton species consumed by T. dextrilobatus in the laboratory. General primers and screening protocols developed here will be useful for identifying food web interactions in other estuarine communities.

Copepod nauplii are important both in their diverse trophic roles in ocean foodwebs and in the population dynamics of copepods. Nauplii have a completely different feeding apparatus from later stages, and the first feeding stage can be very sensitive to starvation, making these life stages critical to population dynamics. Yet extant copepod population models treat nauplii as miniature adults. This work will provide valuable input to the growing efforts at modeling ocean ecosystems.

Further details from final report (pdf)

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	OCE-0929075

[table of contents | back to top]