Contributors | Affiliation | Role |
---|---|---|
Shanks, Alan L. | University of Oregon (OIMB) | Lead Principal Investigator, Contact |
MacMahan, Jamie | Naval Postgraduate School (NPS) | Co-Principal Investigator |
Morgan, Steven | University of California-Davis (UC Davis-BML) | Co-Principal Investigator |
Reniers, Ad | Delft University of Technology (TU Delft) | Co-Principal Investigator |
Rauch, Shannon | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Thirty day time series of average daily phytoplankton concentration in rip currents at Sand City, CA (36.615760 degrees N, 121.85485 degrees W).
From 15 June to 15 July 2010, the investigators sampled phytoplankton within the Sand City surf zone at about low tide each day. Within the surf zone, swimmers collected replicate (n=3) 1 L water samples from a depth of about 1 m by filling a sample jar. The investigators assumed that due to the turbulence of the surf zone that there was no vertical stratification of the phytoplankton. Samples were preserved in acid Lugols. Phytoplankton were identified to genus and counted on Sedgwick Rafter slides using standard techniques (Sournia 1978).
Three samples were collected each day within the rip currents. Counts from the microscopic analysis of the samples were converted to number per liter and the average and 95% confidence interval for each daily set of samples were calculated.
BCO-DMO Processing:
- Re-formatted date, and added separate columns for month, day, year, and year-day.
- Added column containing site name.
- Added lat and lon (from metadata form).
- Modified parameter names to conform with BCO-DMO naming conventions.
File |
---|
SandCity_Phyto2010.csv (Comma Separated Values (.csv), 8.94 KB) MD5:6030b9af6b35ab07e4ce384e3c6f4775 Primary data file for dataset ID 560840 |
Parameter | Description | Units |
site_name | Name of the sampling site. | text |
lat | Latitude of the sampling site. | decimal degrees |
lon | Longitude of the sampling site. | decimal degrees |
date | Month/day/year of sample collection. | mm/dd/yyyy |
PseudoN | PseudoN Ave #/L (mean of the 3 replicate samples). | average number per liter |
PseudoN_95CI | PseudoN 95% confidence interval. | average number per liter |
Chaetoceros | Chaetoceros Ave #/L (mean of the 3 replicate samples). | average number per liter |
Chaetoceros_95CI | Chaetoceros 95% confidence interval. | average number per liter |
Eucampia | Eucampia Ave #/L (mean of the 3 replicate samples). | average number per liter |
Eucampia_95CI | Eucampia 95% confidence interval. | average number per liter |
Thalassionema | Thalassionema Ave #/L (mean of the 3 replicate samples). | average number per liter |
Thalassionema_95CI | Thalassionema 95% confidence interval. | average number per liter |
Coscinodiscus | Coscinodiscus Ave #/L (mean of the 3 replicate samples). | average number per liter |
Coscinodiscus_95CI | Coscinodiscus 95% confidence interval. | average number per liter |
Skeletonema | Skeletonema Ave #/L (mean of the 3 replicate samples). | average number per liter |
Skeletonema_95CI | Skeletonema 95% confidence interval. | average number per liter |
Guindardia | Guindardia Ave #/L (mean of the 3 replicate samples). | average number per liter |
Guindardia_95CI | Guindardia 95% confidence interval. | average number per liter |
Asterionellopsis | Asterionellopsis Ave #/L (mean of the 3 replicate samples). | average number per liter |
Asterionellopsis_95CI | Asterionellopsis 95% confidence interval. | average number per liter |
Dictyocha | Dictyocha Ave #/L (mean of the 3 replicate samples). | average number per liter |
Dictyocha_95CI | Dictyocha 95% confidence interval. | average number per liter |
Stephanopyxis | Stephanopyxis Ave #/L (mean of the 3 replicate samples). | average number per liter |
Stephanopyxis_95CI | Stephanopyxis 95% confidence interval. | average number per liter |
Dissondium | Dissondium Ave #/L (mean of the 3 replicate samples). | average number per liter |
Dissondium_95CI | Dissondium 95% confidence interval. | average number per liter |
Ditylum | Ditylum Ave #/L (mean of the 3 replicate samples). | average number per liter |
Ditylum_95CI | Ditylum 95% confidence interval. | average number per liter |
Thalassiosira | Thalassiosira Ave #/L (mean of the 3 replicate samples). | average number per liter |
Thalassiosira_95CI | Thalassiosira 95% confidence interval. | average number per liter |
Protoperidinium | Protoperidinium Ave #/L (mean of the 3 replicate samples). | average number per liter |
Protoperidinium_95CI | Protoperidinium 95% confidence interval. | average number per liter |
Tropidoneis | Tropidoneis Ave #/L (mean of the 3 replicate samples). | average number per liter |
Tropidoneis_95CI | Tropidoneis 95% confidence interval. | average number per liter |
Odontella | Odontella Ave #/L (mean of the 3 replicate samples). | average number per liter |
Odontella_95CI | Odontella 95% confidence interval. | average number per liter |
Prorocentrum_micans | Prorocentrum micans Ave #/L (mean of the 3 replicate samples). | average number per liter |
Prorocentrum_micans_95CI | Prorocentrum micans 95% confidence interval. | average number per liter |
other_dinos | other dinos Ave #/L (mean of the 3 replicate samples). | average number per liter |
other_dinos_95CI | other dinos 95% confidence interval. | average number per liter |
Corenthron | Corenthron Ave #/L (mean of the 3 replicate samples). | average number per liter |
Corenthron_95CI | Corenthron 95% confidence interval. | average number per liter |
Lauderia | Lauderia Ave #/L (mean of the 3 replicate samples). | average number per liter |
Lauderia_95CI | Lauderia 95% confidence interval. | average number per liter |
Phaeocystis | PhaeocystisAve #/L (mean of the 3 replicate samples). | average number per liter |
Phaeocystis_95CI | Phaeocystis 95% confidence interval. | average number per liter |
Total_cells_per_L | Total cells Ave #/L (mean of the 3 replicate samples). | average number per liter |
Total_cells_per_L_95CI | Total cells 95% confidence interval. | average number per liter |
mon | 2-digit month of year. | mm (01 to 12) |
day | 2-digit day of month. | dd (01 to 31) |
year | 4-digit year. | YYYY |
yrday | Consecutive day of year (Jan 1st = 1) |
Website | |
Platform | Sand_City_Surf_Zone |
Start Date | 2010-06-15 |
End Date | 2010-07-15 |
Description from NSF award abstract:
Many intertidal invertebrates and fishes have complex life cycles that include a planktonic larval phase. At the end of their pelagic development, larvae must return to shore and cross the surf zone. The purpose of this study is to investigate for the first time the role of surf zone hydrodynamics in the rate of delivery of cyprids of intertidal barnacles to the shore. To exploit the greater physical oceanographic understanding of the hydrodynamics of sandy beach surf zones, this initial study will focus on cyprid settlement on hard substrates in surf zones associated with sandy beaches. In the first two years of the study, the investigators will carry out an intensive two-month physical and biological study of a reflective and dissipative surf zone, respectively. At each site they will sample cyprids in the waters of the inner-shelf, just outside the surf zone, and within the surf zone and they will measure settlement on plates in the intertidal zone. At the same time they will collect physical oceanographic data with both in-situ instruments and a fleet of GPS-equipped surface drifters to describe the hydrodynamics of the surf zone. The time series of the physical and biological data will be correlated to investigate mechanisms of delivery of cyprids to the shore. To simulate the hydrodynamic processes responsible for the transport of larvae, the investigators will use a 3D model, resolving both the horizontal and vertical structure of the unsteady nearshore flow. To evaluate potential transport of larvae through the surf zone, a biological module describing the spatial distribution of the larvae will be coupled to the hydrodynamic module to predict the pathways of the larvae and compare with observations. Intensive sampling will help provide insight into the actual processes transporting cyprids from the inner shelf, through the surf zone, and to the intertidal zone. During each summer, weekly barnacle recruitment and daily cyprid settlement will be measured for two months to settlement plates at reflective and dissipative beaches in central California and southern Oregon. Population densities at many beaches along the West Coast will be surveyed each year to determine if a latitudinal gradient in wave energy is correlated with adult barnacle population densities.
Because the fundamentals of surfzone dynamics are universal, results of this research will be broadly applicable not only along the West Coast, but worldwide. This project will have significant impacts on education and public outreach. It will support three graduate students and nine undergraduate students and will create new research opportunities for students of diverse backgrounds from three undergraduate institutions, local high schools and the public. The research will be included in the curriculum of intensive hands-on courses, and undergraduates will participate in the research while learning how a real-world research project addresses fundamental questions. Both a website that highlights findings and an interactive display for visitors to the Bodega Marine Laboratory will be developed. A model coupling nearshore hydrodynamics and onshore transport across the surf zone will be made available to the community to stimulate research into this emerging research topic.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |