Contributors | Affiliation | Role |
---|---|---|
Cutter, Gregory A. | Old Dominion University (ODU) | Principal Investigator |
Kadko, David C. | Florida International University (FIU) | Principal Investigator |
Landing, William M. | Florida State University EOAS (FSU - EOAS) | Principal Investigator, Contact |
Copley, Nancy | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
CTD profile data using the GEOTRACES Clean Carousel sampling system (GTC), GEOTRACES-Arctic cruise HLY1502.
GTC CTD BOTTLE: version 20160609ODU
BCO-DMO Processing:
- added conventional header with dataset name; PI name; version date
- added cruise_id column plus information from headers: EXPOCODE, SECT_ID, STNNBR, CASTNO, GEOTRC_EVENTNO, DATE, TIME, LATITUDE, LONGITUDE, BTMDEPTH, INSTRUMENT_ID
- reformatted time as HHMM
File |
---|
CTD_profiles_GTC.csv (Comma Separated Values (.csv), 7.75 MB) MD5:d9a4a5dceccb83c2ed721691c37444f4 Primary data file for dataset ID 651599 |
Parameter | Description | Units |
cruise_id | Cruise identification | text |
EXPOCODE | expedition code assigned by the CCHDO: NODCShipCodeYearMonthDay | text |
SECT_ID | cruise section identification number | text |
GEOTRC_EVENTNO | GEOTRACES Event Number | dimensionless |
STNNBR | Station Number | dimensionless |
CASTNO | Cast Number | dimensionless |
DATE | Station Date (GMT) in YYYYMMDD format. | unitless |
TIME | Station Time (GMT) | HHMM |
LATITUDE | Station Latitude (South is negative) | decimal degrees |
LONGITUDE | Station Longitude (West is negative) | decimal degrees |
BTMDEPTH | Multibeam bottom depth of the cast | meters |
INSTRUMENT_ID | Instrument Id (from CTD profile data headers) | dimensionless |
CTDPRS | CTD Pressure | DBARS |
CTDPRS_FLAG_W | CTD pressure quality flag (see WOCE Hydrographic Program Quality Flags) | dimensionless |
CTDTMP | CTD Temperature; ITS-90 | degrees celsius |
CTDTMP_FLAG_W | CTD temperature quality flag (see WOCE Hydrographic Program Quality Flags) | dimensionless |
CTDSAL | CTD Salinity | PSS-78 |
CTDSAL_FLAG_W | CTD salinity quality flag (see WOCE Hydrographic Program Quality Flags) | dimensionless |
CTDOXY | CTD Oxygen | UMOL/KG |
CTDOXY_FLAG_W | CTD oxygen quality flag(see WOCE Hydrographic Program Quality Flags) | dimensionless |
TRANSM | Light Transmission (0-5VDC) | volts |
TRANSM_FLAG_W | Light Transmission quality flag (see WOCE Hydrographic Program Quality Flags) | dimensionless |
FLUORM | Fluorescence (0-5VDC) | volts |
FLUORM_FLAG_W | Fluorescence quality flag (see WOCE Hydrographic Program Quality Flags) | dimensionless |
CTDNOBS | CTD Number of Observations | dimensionless |
CTDETIME | CTD Elapsed Time | SECONDS |
ISO_DateTime_UTC | Date/Time (ISO formatted) | YYYY-MM-DDTHH:MM:SS[.xx]Z |
DEPTH | Sample depth | meters |
DEPTH_FLAG_W | DEPTH_FLAG_W quality flag(see WOCE Hydrographic Program Quality Flags) | unitless |
Dataset-specific Instrument Name | |
Generic Instrument Name | CTD Sea-Bird SBE 911plus |
Dataset-specific Description | The system included a Dynacon winch with 7300 m of Vectran cable with conductors, clean lab, and Seabird carousel/CTD with 24 12L GO-FLO bottles (and 14 spares), GO-FLO bottles. |
Generic Instrument Description | The Sea-Bird SBE 911 plus is a type of CTD instrument package for continuous measurement of conductivity, temperature and pressure. The SBE 911 plus includes the SBE 9plus Underwater Unit and the SBE 11plus Deck Unit (for real-time readout using conductive wire) for deployment from a vessel. The combination of the SBE 9 plus and SBE 11 plus is called a SBE 911 plus. The SBE 9 plus uses Sea-Bird's standard modular temperature and conductivity sensors (SBE 3 plus and SBE 4). The SBE 9 plus CTD can be configured with up to eight auxiliary sensors to measure other parameters including dissolved oxygen, pH, turbidity, fluorescence, light (PAR), light transmission, etc.). more information from Sea-Bird Electronics |
Website | |
Platform | USCGC Healy |
Report | |
Start Date | 2015-08-09 |
End Date | 2015-10-12 |
Description | Arctic transect encompassing Bering and Chukchi Shelves and the Canadian, Makarov and Amundsen sub-basins of the Arctic Ocean. The transect started in the Bering Sea (60°N) and traveled northward across the Bering Shelf, through the Bering Strait and across the Chukchi shelf, then traversing along 170-180°W across the Alpha-Mendeleev and Lomonosov Ridges to the North Pole (Amundsen basin, 90°N), and then back southward along ~150°W to terminate on the Chukchi Shelf (72°N).
Additional cruise information is available in the GO-SHIP Cruise Report (PDF) and from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/HLY1502 |
Description from NSF award abstract:
In pursuit of its goal "to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions", in 2015 the International GEOTRACES Program will embark on several years of research in the Arctic Ocean. In a region where climate warming and general environmental change are occurring at amazing speed, research such as this is important for understanding the current state of Arctic Ocean geochemistry and for developing predictive capability as the regional ecosystem continues to warm and influence global oceanic and climatic conditions. The three investigators funded on this award, will manage a large team of U.S.scientists who will compete through the regular NSF proposal process to contribute their own unique expertise in marine trace metal, isotopic, and carbon cycle geochemistry to the U.S. effort. The three managers will be responsible for arranging and overseeing at-sea technical services such as hydrographic measurements, nutrient analyses, and around-the-clock management of on-deck sampling activites upon which all participants depend, and for organizing all pre- and post-cruise technical support and scientific meetings. The management team will also lead educational outreach activities for the general public in Nome and Barrow, Alaska, to explain the significance of the study to these communities and to learn from residents' insights on observed changes in the marine system. The project itself will provide for the support and training of a number of pre-doctoral students and post-doctoral researchers. Inasmuch as the Arctic Ocean is an epicenter of global climate change, findings of this study are expected to advance present capability to forecast changes in regional and globlal ecosystem and climate system functioning.
As the United States' contribution to the International GEOTRACES Arctic Ocean initiative, this project will be part of an ongoing multi-national effort to further scientific knowledge about trace elements and isotopes in the world ocean. This U.S. expedition will focus on the western Arctic Ocean in the boreal summer of 2015. The scientific team will consist of the management team funded through this award plus a team of scientists from U.S. academic institutions who will have successfully competed for and received NSF funds for specific science projects in time to participate in the final stages of cruise planning. The cruise track segments will include the Bering Strait, Chukchi shelf, and the deep Canada Basin. Several stations will be designated as so-called super stations for intense study of atmospheric aerosols, sea ice, and sediment chemistry as well as water-column processes. In total, the set of coordinated international expeditions will involve the deployment of ice-capable research ships from 6 nations (US, Canada, Germany, Sweden, UK, and Russia) across different parts of the Arctic Ocean, and application of state-of-the-art methods to unravel the complex dynamics of trace metals and isotopes that are important as oceanographic and biogeochemical tracers in the sea.
GEOTRACES is a SCOR sponsored program; and funding for program infrastructure development is provided by the U.S. National Science Foundation.
GEOTRACES gained momentum following a special symposium, S02: Biogeochemical cycling of trace elements and isotopes in the ocean and applications to constrain contemporary marine processes (GEOSECS II), at a 2003 Goldschmidt meeting convened in Japan. The GEOSECS II acronym referred to the Geochemical Ocean Section Studies To determine full water column distributions of selected trace elements and isotopes, including their concentration, chemical speciation, and physical form, along a sufficient number of sections in each ocean basin to establish the principal relationships between these distributions and with more traditional hydrographic parameters;
* To evaluate the sources, sinks, and internal cycling of these species and thereby characterize more completely the physical, chemical and biological processes regulating their distributions, and the sensitivity of these processes to global change; and
* To understand the processes that control the concentrations of geochemical species used for proxies of the past environment, both in the water column and in the substrates that reflect the water column.
GEOTRACES will be global in scope, consisting of ocean sections complemented by regional process studies. Sections and process studies will combine fieldwork, laboratory experiments and modelling. Beyond realizing the scientific objectives identified above, a natural outcome of this work will be to build a community of marine scientists who understand the processes regulating trace element cycles sufficiently well to exploit this knowledge reliably in future interdisciplinary studies.
Expand "Projects" below for information about and data resulting from individual US GEOTRACES research projects.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) | |
NSF Division of Ocean Sciences (NSF OCE) | |
NSF Division of Ocean Sciences (NSF OCE) | |
NSF Division of Ocean Sciences (NSF OCE) |