Contributors | Affiliation | Role |
---|---|---|
Bernhard, Joan M. | Woods Hole Oceanographic Institution (WHOI) | Principal Investigator |
Copley, Nancy | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
This dataset includes bottom-water DIC and alkalinity, with additional carbonate calculations, from R/V Endeavor EN524 in the Mud Patch site, continental shelf off New England; 40.43 N 70.5 W from May 2013.
Bottom waters were obtained via CTD-Niskin rosette deployment to within ~5 m of the bottom. Triplicate samples were analyzed for DIC and alkalinity from each of 3 deployments. Alkalinity was determined using Gran titrations of 1 ml samples. DIC was determined manometrically on ~5-ml samples using an automated vacuum extraction system.
All other carbonate system parameters were calculated via using CO2SYS (Lewis & Wallace 1998) and the dissociation constants of Mehrbach et al. (1973) as refit by Dickson & Millero (1987), and the calcite solubility of Mucci (1983).
Related Reference: JC Wit, MM Davis, DC Mccorkle, JM Bernhard, A short-term survival experiment assessing impacts of ocean acidification and hypoxia on the benthic foraminifer Globobulimina turgida (2016) Journal of Foraminiferal Research, 46: 25-33. https://doi.org/10.2113/gsjfr.46.1.25
BCO-DMO Processing Notes:
- added conventional header with dataset name, PI name, version date
- modified parameter names to conform with BCO-DMO naming conventions
- replaced spaces with underscores
- reduced significant digits to right of decimal point from 11 to 2 for DIC, ALK and carbonate
- added yrday_utc and ISO_DateTime_UTC, calculated from date and time
File |
---|
carbonate_chemistry.csv (Comma Separated Values (.csv), 1.28 KB) MD5:79264c86fc56721e644852ce9f244859 Primary data file for dataset ID 670390 |
Parameter | Description | Units |
sample | sample identifier | unitless |
event | event number | unitless |
lat | latitude; north is positive | decimal degrees |
lon | longitude; east is positive | decimal degrees |
date | date formatted as yyyy-mm-dd | unitless |
time | UTC time formatted as HH:MM | unitless |
yrday_utc | UTC day and decimal time:eg. 326.5 for the 326th day of the year or November 22 at 1200 hours (noon) | julian day and fraction of day |
ISO_DateTime_UTC | Date/Time (UTC) ISO formatted based on ISO 8601:2004(E) with format YYYY-mm-ddTHH:MM:SS[.xx]Z | year;month;day;hour;minute;second |
depth_w | depth of water | meters |
DIC | dissolved inorganic carbon | micromole/kilogram (umol/kg) |
alkalinity | total alkalinity | micromole/kilogram (umol/kg) |
pCO2 | partial pressure of carbon dioxide computation from pH and alkalinity | ppmv |
bicarbonate | concentration of bicarbonate ion ([HCO3]-) | micromole/kilogram seawater (umol/kg) |
carbonate | concentration of carbonate ion ([CO3]2-) in seawater | micromole/kilogram seawater (umol/kg) |
Om_calcite | The saturation state of seawater with respect to calcite | dimensionless |
pH | pH: The measure of the acidity or basicity of an aqueous solution | dimensionless |
Dataset-specific Instrument Name | |
Generic Instrument Name | Niskin bottle |
Generic Instrument Description | A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc. |
Website | |
Platform | R/V Endeavor |
Start Date | 2013-05-19 |
End Date | 2013-05-22 |
Description | UNOLS cruise request: http://strs.unols.org/Public/diu_project_view.aspx?project_id=103010
The May cruise is the first for the NSF OCE funded Ocean Acidification, Hypoxia and Warming project also known by the project researchers as "OA Propagule". The cruise was timed such that samples would be collected soon after the spring bloom.
During the cruise, investigators plan to collect CTD profile data, including dissolved oxygen, bottom water with Niskin bottles deployed on the CTD rosette, MC800 multicores, and Soutar boxcores from the "Mud Patch" study site. The study area is located on the continental shelf approximately 50 nm south of Martha's Vineyard (40.43 N 70.5 W).
The original cruise event log and other underway data submitted by the vessel operator will be available from the NSF R2R cruise catalog.
Cruise track image from the University of Rhode Island, the vessel operator. |
from the NSF award abstract:
The average sea surface temperature (SST) has increased over the last 100 years, rising atmospheric partial pressure of carbon dioxide (pCO2) is lowering the pH of the oceans, and the extent and intensity of low-oxygen bottom waters is growing, at least in certain regions. The biological impacts of these ongoing changes -- warming, acidification, and hypoxia -- have each been studied independently, but few studies have explored the possible interactions among these stressors.
This research, led by a scientist from the Woods Hole Oceanographic Institution, studies the compounded effects of ocean acidification, hypoxia, and warming on an assemblage of benthic foraminifera collected from the continental shelf off New England. Foraminifera are an ideal organism for this work because they (1) are relatively small, allowing experimentation on statistically significant populations; (2) have both calcareous and non-calcareous representatives; (3) are relatively short-lived so experiments include a major portion of their life cycle; (4) include aerobes and anaerobes; and (5) provide a fossil record allowing comparisons across time. Laboratory culturing experiments will be used to determine the response of benthic foraminifera, in terms of survival and growth, to co-varying parameters of pH and oxygen, and to explore the influence of increased temperature on these responses. The researchers will examine the relative effects of higher pCO2, lower [O2], and higher temperature (T) on both calcareous and non-calcareous benthic foraminifera. In addition, they will examine the pre-Industrial benthic foraminiferal assemblage at the field site, and will compare that assemblage to those produced in the experiments under pre-Industrial (lower than current day) and elevated pCO2 levels.
NSF Climate Research Investment (CRI) activities that were initiated in 2010 are now included under Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES). SEES is a portfolio of activities that highlights NSF's unique role in helping society address the challenge(s) of achieving sustainability. Detailed information about the SEES program is available from NSF (https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504707).
In recognition of the need for basic research concerning the nature, extent and impact of ocean acidification on oceanic environments in the past, present and future, the goal of the SEES: OA program is to understand (a) the chemistry and physical chemistry of ocean acidification; (b) how ocean acidification interacts with processes at the organismal level; and (c) how the earth system history informs our understanding of the effects of ocean acidification on the present day and future ocean.
Solicitations issued under this program:
NSF 10-530, FY 2010-FY2011
NSF 12-500, FY 2012
NSF 12-600, FY 2013
NSF 13-586, FY 2014
NSF 13-586 was the final solicitation that will be released for this program.
PI Meetings:
1st U.S. Ocean Acidification PI Meeting(March 22-24, 2011, Woods Hole, MA)
2nd U.S. Ocean Acidification PI Meeting(Sept. 18-20, 2013, Washington, DC)
3rd U.S. Ocean Acidification PI Meeting (June 9-11, 2015, Woods Hole, MA – Tentative)
NSF media releases for the Ocean Acidification Program:
Press Release 10-186 NSF Awards Grants to Study Effects of Ocean Acidification
Discovery Blue Mussels "Hang On" Along Rocky Shores: For How Long?
Press Release 13-102 World Oceans Month Brings Mixed News for Oysters
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |