Vertical profiles of N2 gas concentrations in excess of equilibrium values along with the isotopic composition of total N2, NO3- and NO2- from R/V New Horizon cruise NH1410 in the Eastern Tropical North Pacific from May to June 2014 Website: https://www.bco-dmo.org/dataset/705567 Data Type: Cruise Results Version: 1 Version Date: 2017-06-20 #### **Project** » <u>Collaborative Research: Autonomous Lagrangian Floats for Oxygen Minimum Zone Biogeochemistry</u> (OMZ Biogeochemistry Floats) | Contributors | Affiliation | Role | |----------------------|--|---------------------------| | Altabet, Mark A. | University of Massachusetts Dartmouth (UMASSD-SMAST) | Principal Investigator | | McNeil, Craig L. | University of Washington (UW APL) | Co-Principal Investigator | | <u>D'Asaro, Eric</u> | University of Washington (UW APL) | Contact | | Rauch, Shannon | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager | #### **Abstract** This dataset includes vertical profiles of N2 gas concentrations in excess of equilibrium values along with the isotopic composition of total N2, NO3- and NO2- from R/V New Horizon cruise NH1410 in the Eastern Tropical North Pacific from May to June 2014. #### Table of Contents - Coverage - Dataset Description - Methods & Sampling - Data Processing Description - Data Files - Related Publications - Parameters - <u>Instruments</u> - <u>Deployments</u> - Project Information - Funding ## Coverage **Spatial Extent**: N:25.2 **E**:-104.2 **S**:18.19 **W**:-116.53 **Temporal Extent**: 2014-05-13 - 2014-06-07 ## **Dataset Description** Vertical profiles from the Mexican OMZ of N2 gas concentrations in excess of equilibrium values along with the isotopic composition of total N2, NO3- and NO2-. #### Methods & Sampling Sampling at sea was done using a standard SeaBird CTD/Rosette system. Hydrographic data was processed using SeaBird software and standard procedures. O2 was measured by an SBE43 sensor and final data were calibrated against Winkler O2 determinations NO3- and NO2- concentrations were measured in the laboratory on frozen samples using a SmartChem autoanalyzer using standard chemical methods N2 excess were determined from N2/Ar ratios measured using the procedures described by Charoenpong et al. (2014) with the exception that the measurements were made at sea using a Pfieffer 400 series quadrupole mass spectrometer system. Data acquisition and initial data processing used custom LabView software. Biogenic N2 concentrations were determined by subtraction of estimated background excess N2 as described in Chang et al. (2012). The d15N of N2 was determined in the laboratory using similar methodology but using an IsoPrime Isotope Ratio Mass Spectrometer (IRMS) as described by Charoenpong et al. (2014) using IonVantage software. The isotopic composition of nitrate and nitrite was determined on samples returned to the laboratory using procedures described by McIvin and Casciotti (2011) and McIvin and Altabet (2005). Samples for nitrate isotope analysis were preserved by mild acidification and addition of sulfamic acid to remove nitrite. Nitrite samples were preserved at high pH with NaOH to retain its d180 signature. An IsoPrime IRMS running IonVantage was used to make these measurements. Final data reduction and organization was done using Microsoft Excel. ### **Data Processing Description** See above for data processing. BCO-DMO processing: - modified parameter names to conform with BCO-DMO naming conventions (replaced # with "num", replaced hyphens with underscores); - re-formatted date to mm/dd/yyyy; - re-formatted time to HH:MM:SS; - added ISO date/time field using original date and time fields; - replaced "#N/A" and blanks (missing data) with "nd"; - there were 12 rows where lon values were degrees and decimal mins (CTD 11F02; 107 53.218). Converted those to decimal degrees. #### [table of contents | back to top] #### **Data Files** ## File **OMZ_N2.csv**(Comma Separated Values (.csv), 96.55 KB) MD5:60d8d1348f0c364bab02020cb03475d2 Primary data file for dataset ID 705567 [table of contents | back to top] ## **Related Publications** Chang, B. X., Devol, A. H., & Emerson, S. R. (2012). Fixed nitrogen loss from the eastern tropical North Pacific and Arabian Sea oxygen deficient zones determined from measurements of N2:Ar. Global Biogeochemical Cycles, 26(3). doi:10.1029/2011gb004207 https://doi.org/10.1029/2011GB004207 *Methods* Charoenpong, C. N., Bristow, L. A., & Altabet, M. A. (2014). A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition. Limnology and Oceanography: Methods, 12(5), 323–337. doi:10.4319/lom.2014.12.323 Methods McIlvin, M. R., & Altabet, M. A. (2005). Chemical Conversion of Nitrate and Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in Freshwater and Seawater. Analytical Chemistry, 77(17), 5589-5595. doi: $\frac{10.1021}{ac050528s}$ Methods McIlvin, M. R., & Casciotti, K. L. (2011). Technical Updates to the Bacterial Method for Nitrate Isotopic Analyses. Analytical Chemistry, 83(5), 1850-1856. doi: 10.1021/ac1028984 Methods ## [table of contents | back to top] ## **Parameters** | Parameter | Description | Units | |---------------------|---|--| | cruise | Cruise identifier | unitless | | ctd_num | CTD cast identifier | unitless | | date | Date formatted as dd/mm/yyyy | unitless | | btl_num | Niskin bottle number | unitless | | lat | Latitude | decimal degrees | | lon | Longitude | decimal degrees | | time_local | Local ship time formatted as HH:MM:SS | unitless | | ISO_DateTime_Local | Date and time formatted to ISO 8601 standard: yyyy-mm-ddTHH:MM:SS | unitless | | depth_ctd | CTD depth | meters | | pressure_ctd | CTD pressure | decibars (dB) | | in_situ_temp_ctd | CTD in situ temperature | degrees Celsius | | salinity_ctd | CTD salinity | unitless | | calibrated_ctd_O2 | Winkler calibrated CTD oxygen | micromoles per kilogram
(umol/kg) | | sigma_theta | Density anomaly | kilograms per cubic meter - 1000
(kg/m3 - 1000) | | NO3 | Nitrate concentration | micromoles per kilogram
(umol/kg) | | NO2 | Nitrite concentration | micromoles per kilogram
(umol/kg) | | N2_excess | N2 concentration in excess of equilibrium with atmosphere | micromoles per kilogram
(umol/kg) | | stdev_N2_excess | Precision of above | micromoles per kilogram
(umol/kg) | | bio_N2 | biogenic N2 concentration | micromoles per kilogram
(umol/kg) | | d15N2 | Difference in d15N of total N2 relative to equilibrium values | per mil (‰) | | stdev_d15N2_anomaly | Precision of above | per mil (‰) | | d15NO3 | d15N of nitrate | per mil (‰) | | d18O_NO3 | d180 of nitrate | per mil (‰) | | d15NO2 | d15N of nitrite | per mil (‰) | | d18O_NO2 | d180 of nitrite | per mil (‰) | # Instruments | Dataset-
specific
Instrument
Name | SeaBird CTD/Rosette | |--|---| | Generic
Instrument
Name | CTD Sea-Bird | | Dataset-
specific
Description | Sampling at sea was done using a standard SeaBird CTD/Rosette system. | | Generic
Instrument
Description | Conductivity, Temperature, Depth (CTD) sensor package from SeaBird Electronics, no specific unit identified. This instrument designation is used when specific make and model are not known. See also other SeaBird instruments listed under CTD. More information from Sea-Bird Electronics. | | Dataset-
specific
Instrument
Name | SmartChem autoanalyzer | |--|---| | Generic
Instrument
Name | Discrete Analyzer | | Dataset-
specific
Description | NO3- and NO2- concentrations were measured in the laboratory on frozen samples using a
SmartChem autoanalyzer using standard chemical methods | | Generic
Instrument
Description | Discrete analyzers utilize discrete reaction wells to mix and develop the colorimetric reaction, allowing for a wide variety of assays to be performed from one sample. These instruments are ideal for drinking water, wastewater, soil testing, environmental and university or research applications where multiple assays and high throughput are required. | | Dataset-
specific
Instrument
Name | IsoPrime Isotope Ratio Mass Spectrometer (IRMS) | |--|--| | Generic
Instrument
Name | Isotope-ratio Mass Spectrometer | | Dataset-
specific
Description | The d15N of N2 was determined in the laboratory using an IsoPrime Isotope Ratio Mass Spectrometer (IRMS) as described by Charoenpong et al. (2014) using IonVantage software. An IsoPrime IRMS running IonVantage was also used to make measurements of the isotopic composition of nitrate and nitrite. | | | The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer). | | Dataset-
specific
Instrument
Name | Pfieffer 400 series quadrupole mass spectrometer | |--|---| | Generic
Instrument
Name | Mass Spectrometer | | Dataset-
specific
Description | N2 excess were determined from N2/Ar ratios measured using the procedures described by Charoenpong et al. (2014) with the exception that the measurements were made at sea using a Pfieffer 400 series quadrupole mass spectrometer system. | | Generic
Instrument
Description | General term for instruments used to measure the mass-to-charge ratio of ions; generally used to find the composition of a sample by generating a mass spectrum representing the masses of sample components. | | Dataset-specific
Instrument
Name | SBE43 sensor | |--|--| | Generic
Instrument
Name | Sea-Bird SBE 43 Dissolved Oxygen Sensor | | Dataset-specific
Description | O2 was measured by an SBE43 sensor and final data were calibrated against Winkler O2 determinations | | Generic
Instrument
Description | The Sea-Bird SBE 43 dissolved oxygen sensor is a redesign of the Clark polarographic membrane type of dissolved oxygen sensors. more information from Sea-Bird Electronics | ## [table of contents | back to top] ## **Deployments** ### NH1410 | Website | https://www.bco-dmo.org/deployment/628491 | |-------------|---| | Platform | R/V New Horizon | | Report | http://dmoserv3.whoi.edu/data_docs/OMZ_SulfurCycling/Cruise_Report_NH1410.pdf | | Start Date | 2014-05-10 | | End Date | 2014-06-08 | | Description | Oxygen Minimum Zone Microbial Biogeochemistry Expedition 2 (OMZoMBiE 2) Cruise Track (PDF) Cruise information and original data are available from R2R: https://www.rvdata.us/search/cruise/NH1410 | ## [table of contents | back to top] # **Project Information** Collaborative Research: Autonomous Lagrangian Floats for Oxygen Minimum Zone Biogeochemistry (OMZ Biogeochemistry Floats) ## NSF Award Abstract: Intense oxygen minimum zones (OMZ) of the world's oceans, though constituting a small fraction of total oceanic volume, host critical biogeochemical processes and are central to understanding the ocean's N cycle and its biogeochemical and isotopic signatures. OMZ's are sites for a large portion of marine combined N loss to N2 (25 to 50%) and dominate the ocean N isotope budget through cogeneration of 15N and 18O enriched NO3 -. Major outstanding issues include the magnitude of this N sink, the stoichiometry between NO3 - loss and the production of biogenic N2, the microbial pathways leading to N2 production, as well as the interaction between these OMZ processes and the surface export of organic matter as well as physical circulation. The PI's request funding to develop a new, in situ, autonomous tool for studying N loss in OMZ's. It will allow observation of variability over a range in temporal and spatial scales that are critical for understanding controlling processes and better estimating the magnitude of N-loss. The sustained deployments possible with autonomous platforms will be critical for detecting any response of OMZ's to climate change. Broader Impacts: Nitrogen is often the limiting nutrient for biological production in the oceans, and the current global marine nitrogen balance has been in much debate due to a number of uncertainties and questions. A successful development of this proposed sensor-float package may help in resolving some of the important questions on the spatial and temporal variabilities of the OMZs. In turn, such knowledge is essential in assessing the global nitrogen balance in the current and future oceans. This proposed project would involve active participation of undergraduates, graduates and postdocs, as well as the training of a K-12 science teacher. This project would also foster collaboration with international researchers. The PI's have partnered with Ocean Explorium at New Bedford Seaport to provide an educational outreach component designed to aid teacher development and create a field trip program for teachers in the south coast of Massachusetts. The proposal will support post-doc, graduate and undergraduate students. ## [table of contents | back to top] # **Funding** | Funding Source | Award | |--|-------------| | NSF Division of Ocean Sciences (NSF OCE) | OCE-1154741 | | NSF Division of Ocean Sciences (NSF OCE) | OCE-1153295 | [table of contents | back to top]