Cyprinodon variegatus offspring growth rate from 5 generation increasing temperature experiments conducted on Atlantic wild caught specimens during 2014.

Website: https://www.bco-dmo.org/dataset/709787

Data Type: experimental

Version: 1

Version Date: 2017-07-25

Project

» Beyond maternal effects: Transgenerational plasticity in thermal performance (ThermalTGP)

Contributors	Affiliation	Role
Mangel, Marc	University of California-Santa Cruz (UCSC)	Principal Investigator
Munch, Stephan	National Oceanic and Atmospheric Administration (NOAA)	Co-Principal Investigator, Contact
Sogard, Susan	National Oceanic and Atmospheric Administration (NOAA)	Co-Principal Investigator
Ake, Hannah	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

Cyprinodon variegatus offspring growth rate from 5 generation increasing temperature experiments conducted on Atlantic wild caught specimens during 2014.

Table of Contents

- Coverage
- Dataset Description
 - Methods & Sampling
 - Data Processing Description
- Data Files
- Related Publications
- Parameters
- <u>Instruments</u>
- <u>Deployments</u>
- Project Information
- <u>Funding</u>

Coverage

Spatial Extent: N:41.58657 **E**:-68.291877 **S**:31.817571 **W**:-81.14672

Temporal Extent: 2014 - 2014

Dataset Description

Offspring growth rate from 5 generation increasing temperature experiment.

Methods & Sampling

We caught wild juvenile sheepshead minnows (Cyprinodon variegatus) from South Carolina (SC), Maryland (MD) and Connecticut (CT) in mid-August in 2014. All fish were transferred to acclimation aquaria at 24 deg C at the NOAA Fisheries Science Center, Santa Cruz, California. These temperatures represent the range experienced by sheepshead minnows from SC, MD and CT during a normal non-breeding season. Daily care

followed standard protocols (Cripe et al. 2009, Salinas and Munch 2012), including ad libitum feeding of TetraMin flakes (Tetra Holding, Blacksburg, VA, USA). Salinity was maintained at 20 ppt, but was reduced to 10 ppt for two days prior to egg collection. The photoperiod was 14L:10D. Each day we changed 10% of the total volume of water.

For the experiments of thermal transgenerational plasticity, all eggs were divided in half and transferred to either same temperature with parent or different temperature with parent: for example, if we collected eggs from 26 deg C parents, then a half of eggs were at 26 deg C and another half of eggs were at 32 deg C. Upon hatching we randomly selected up to four larvae from each treatment group. We measured standard body length from photographs of the fish obtained with a Canon 40D digital camera with Image J (Rasband 2016). At the end of experiment, we measured wet-mass, and them removed and weighted the testes and gonad.

Data Processing Description

Growth rate was calculated as the difference in length at 8 weeks after hatching and length at 2 weeks posthatching divided by time because growth was linear over this period. Age of the maturation was assessed by the developmental order of iridescent blue color.

BCO-DMO Data Processing Notes:

- reformatted column names to comply with BCO-DMO standards
- filled all blank cells with nd

[table of contents | back to top]

Data Files

File

5generation_exp.csv(Comma Separated Values (.csv), 124.13 KB)

MD5:023ee895f3d1d3816f180385607ff13b

Primary data file for dataset ID 709787

[table of contents | back to top]

Related Publications

Cripe, G. M., Hemmer, B. L., Goodman, L. R., & Vennari, J. C. (2008). Development of a Methodology for Successful Multigeneration Life-Cycle Testing of the Estuarine Sheepshead Minnow, Cyprinodon variegatus. Archives of Environmental Contamination and Toxicology, 56(3), 500–508. doi:10.1007/s00244-008-9204-8 Methods

Salinas, S., & Munch, S. B. (2011). Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecology Letters, 15(2), 159–163. doi:10.1111/j.1461-0248.2011.01721.x

Methods

Schneider, C. A., Rasband, W. S., ... (n.d.). ImageJ. US National Institutes of Health, Bethesda, MD, USA. Available from https://imagej.nih.gov/ij/Software

[table of contents | back to top]

Parameters

Parameter	Description	Units
Generation	Number of generations	unitless
P_Temp	Parent temperature	degree Celsius
F1_Temp	F1 temperature	degree Celsius
F2_Temp	F2 temperature	degree Celsius
F3_Temp	F3 temperature	degree Celsius
F4_Temp	F4 temperature	degree Celsius
F5_Temp	F5 temperature	degree Celsius
T_Day	Date of parental exposure on new temperature (26 C or 32C)	unitless
Sex	Code of Offspring sex; 1 - male; 2 - female	unitless
WK2	Standard body length at week 2	centimeters
GR_8WK	Mean growth rate	centimeters per week
AgeMaturation	Weeks it took to become mature	count

[table of contents | back to top]

Instruments

Dataset-specific Instrument Name	Aquarium
Generic Instrument Name	Aquarium
Dataset-specific Description	Used to acclimate juvenile sheepshead minnows
Generic Instrument Description	Aquarium - a vivarium consisting of at least one transparent side in which water- dwelling plants or animals are kept

Dataset-specific Instrument Name	Canon 40D digital camera with Image J
Generic Instrument Name	Camera
Dataset-specific Description	Photographs used to determine fish body length
Generic Instrument Description	All types of photographic equipment including stills, video, film and digital systems.

Dataset-specific Instrument Name	Used to measure temperature
Generic Instrument Name	digital thermometer
Dataset-specific Description	Used to measure water temperature and/or body temperature
Generic Instrument Description	An instrument that measures temperature digitally.

Dataset-specific Instrument Name	Salinity Sensor
Generic Instrument Name	Salinity Sensor
Dataset-specific Description	Used to maintain salinity in aquaria
Generic Instrument Description	Category of instrument that simultaneously measures electrical conductivity and temperature in the water column to provide temperature and salinity data.

Dataset-specific Instrument Name	Scale
Generic Instrument Name	scale
Dataset-specific Description	Used to measure wet-mass, testes, and gonads.
Generic Instrument Description	An instrument used to measure weight or mass.

[table of contents | back to top]

Deployments

Mangel_2014

Website	https://www.bco-dmo.org/deployment/704753
Platform	shoreside Eastern United States
Start Date	2014-07-01
End Date	2014-09-30
Description	Estuaries in South Carolina, Maryland, and Connecticut

[table of contents | back to top]

Project Information

Beyond maternal effects: Transgenerational plasticity in thermal performance (ThermalTGP)

Coverage: Nearshore waters of Florida, South Carolina, Maryland, & Connecticut

Description from NSF award abstract:

Many marine species are currently undergoing significant range shifts and exceedingly rapid changes in phenotype driven, potentially, by warming, ocean acidification, and human-induced evolution. Dramatic shifts in body size and maturation have been observed in many marine fishes worldwide. There is considerable debate over whether these changes are the result of rapid evolution or physiological responses to changes in environmental variables. Attempts to address these issues typically assume that thermal physiology is fixed or slow to evolve. Transgenerational plasticity (TGP) occurs when the environment experienced by the parents directly translates, without any changes in DNA sequences, into significant changes in offspring. TGP in thermal performance provides a mechanism for a rapid response to climate change that has, to date, been demonstrated only in terrestrial plants. This project will provide the first test of thermal TGP in marine systems and will explore its implications for forecasting responses to human-induced evolution and climate change. First, the PIs will test for thermal TGP in four taxonomically distinct fishes. Then, using sheepshead minnows as a model, they will study the dependence of transgenerational responses on the predictability of the thermal environment and test whether disparate thermal environments select for different levels of TGP. With these data they will develop the first stochastic population model including TGP and use it to understand life history evolution and predict responses to climate change.

The existence of thermal TGP poses a serious challenge to the idea that changes in thermal physiology are slow to evolve and can safely be ignored in modeling population responses to climate change or harvest selection. By extension, virtually all field estimates of heritability and physiological measurements will need to be reconsidered in light of thermal TGP, as will conclusions regarding rapid evolution in shifting environments. The research team has made significant contributions to theoretical and empirical work on the evolutionary, behavioral, and physiological ecology of growth in many different species and environments. Together, the team has substantial prior experience in all aspects of the proposed research and has worked together successfully for many years.

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	OCE-1130483

[table of contents | back to top]