Contributors | Affiliation | Role |
---|---|---|
White, J. Wilson | University of North Carolina - Wilmington (UNC-Wilmington) | Principal Investigator, Contact |
Brander, Susanne | University of North Carolina - Wilmington (UNC-Wilmington) | Co-Principal Investigator |
Ake, Hannah | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Identification data for each tagged adult Menidia beryllina used in spawning trials, post dissection.
Fish survey data were collected by beach seine in the Suisun Bay region of the San Francisco Bay-Delta by Susanne Brander and Bryan Cole. Sampling methodology is fully described in Brander et al. (2013).
Laboratory spawning trials were used to determine the relationship between sex ratio and egg production. Adult inland silversides were placed together in 95 liter circular tanks and allowed to spawn on an artificial spawning substrate (polyester yarn clumps). Substrate was removed daily and inspected for eggs; fertilization was determined by coloration. Full details are provided in White et al. (2017).
Scripts that were used to process these data can be found here: github.com/jwilsonwhite/IPM_statespace. Model code implements an explicit-sex, age-structured model that examines the effects of sex change (due to endocrine disruption) on fish populations. The code also fits a nonlinear mating function to laboratory spawning data, for use in parameterizing the model. All methodological details are provided in White et al. (2017).
BCO-DMO Data Processing Notes:
-removed question marks from data
-replaced all blank cells with nd
-in cases where just questions marks were entered as notes, question marks were replaced with "unknown"
-replaced data -9999 with nd
File |
---|
fish_ids.csv (Comma Separated Values (.csv), 3.07 KB) MD5:4b335bead3254a60387a7c796f377066 Primary data file for dataset ID 713206 |
Parameter | Description | Units |
sex | Sex of fish; F = femaile; M= male | unitless |
tag | Alphanumeric tag number | unitless |
id | Fish ID associated with tag | unitless |
ripe | Were eggs ripe at time of dissection? Y = yes; N = no; X = male fish | unitless |
note | Observer notes | unitless |
SL | Standard length of fish | millimeters |
mass | Mass of fish | grams |
gonad_mass | Mass of fish gonad | grams |
Dataset-specific Instrument Name | Beach seine |
Generic Instrument Name | Purse-seine Fishing Gear |
Dataset-specific Description | Used to collect samples |
Generic Instrument Description | A purse seine is a large wall of netting deployed in a circle around an entire school of fish. The seine has floats along the top line with a lead line of chain along the bottom. Once a school of fish is located, a skiff pulls the seine into the water as the vessel encircles the school with the net. A cable running along the bottom is then pulled in, "pursing" the net closed on the bottom, preventing fish from escaping by swimming downward. The catch is harvested by bringing the net alongside the vessel and brailing the fish aboard. |
Website | |
Platform | shoreside Calif_shore |
Start Date | 2009-03-20 |
End Date | 2013-10-09 |
Description | Menidia beryllina individuals were collected from Suisan Bay, California for spawning experiments. |
Description from NSF award abstract:
Many marine fish species change sex during their lifetimes, and many of them are targets of commercial and recreational fishing. The timing of sex change in these animals is often related to body size, so populations typically consist of many small fish of the initial sex (usually female) and few large fish of the other sex (usually male). In nature, smaller fish are at a greater risk of mortality due to predation, but fishermen tend to seek larger fish. Thus fishing that targets larger individuals may skew sex ratios, removing enough of the larger sex to hinder reproduction. However, the extent to which size-selective mortality affects sex-changing fishes is poorly understood. This research will explore the effects of size-selective mortality on the population dynamics of sex-changing species using an integrated set of field experiments and mathematical models. It will provide the first experimental exploration of the sensitivity of different sex-change patterns and reproductive strategies to selective mortality. The results will advance our knowledge of the susceptibility and resilience of sex-changing organisms to different types of size-selective mortality and will reveal how sex-changing species can recover after size-selection ceases, as in populations within marine reserves where fishing is suddenly prohibited. The findings will inform fisheries management policies, which do not currently consider the ability of a species to change sex in setting fisheries regulations.
This project will consist of a three-year study of the effects of size-specific mortality on sex-changing fishes. Field experiments will use three closely related rocky-reef fishes that differ in sex-change pattern and are amenable to field manipulation and direct measurement of reproductive output. The species include a protogynous hermaphrodite (a female-to-male sex-change pattern common among harvested species) and two simultaneous hermaphrodites that differ in their ability to switch between male and female. Two types of experiments will be conducted on populations established on replicate patch reefs at Santa Catalina Island, California: (1) sex ratios will be manipulated to determine when the scarcity of males limits population-level reproductive output; and (2) experiments cross-factoring the intensity of mortality with the form of size-selection (i.e., higher mortality of large or small individuals) will test the demographic consequences of size-selective mortality. In concert with the field experiments, size- and sex-structured population models (integral projection models) will be developed for use in three ways: (1) to evaluate how different types of selective mortality should affect population dynamics; (2) to predict outcomes of the field experiments, testing/validating the model and allowing direct prediction of the ecological significance of short-term selection; and (3) to fit to existing survey data for a fourth species, a widely fished, sex-changing fish, inside and outside of marine reserves. Part (3) will evaluate whether and how quickly the mating system and reproductive output of that species (not directly measurable in the field) is recovering inside reserves. This integrated set of field experiments and models will yield novel insight into the effects of size-selective mortality on the population dynamics of sex-changing marine species.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |