Niskin bottle sample inventory from Alvin dives and shipboard CTD's on R/V Atlantis AT37-13 in the Pacific margin of Costa Rica from May to June 2017 (Costa Rica Seeps project) Website: https://www.bco-dmo.org/dataset/715752 Data Type: Cruise Results Version: 1 Version Date: 2017-09-25 #### **Project** » Collaborative research: Quantifying the biological, chemical, and physical linkages between chemosynthetic communities and the surrounding deep sea (Costa Rica Seeps) | Contributors | Affiliation | Role | |---------------------|---|---------------------------| | Orphan, Victoria J. | California Institute of Technology (Caltech) | Principal Investigator | | Cordes, Erik E. | Temple University (Temple) | Co-Principal Investigator | | Copley, Nancy | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager | #### Abstract This dataset is an inventory of Niskin bottle samples collected by HOV/Alvin and the shipboard CTD on the RV/Atlantis cruise AT/37-13 during May and June 2017 at the Costa Rica Margin (sites Mound 12, Quepos landslide, Jaco Scar). #### **Table of Contents** - Coverage - <u>Dataset Description</u> - Methods & Sampling - Data Processing Description - Data Files - <u>Parameters</u> - Instruments - <u>Deployments</u> - Project Information - Funding ## Coverage Spatial Extent: N:9.3031 E:-84.2146 S:8.85085 W:-84.84043 **Temporal Extent**: 2017-05-22 - 2017-06-09 #### Methods & Sampling Niskin water from the CTD rosette or Alvin mounted bottles were filtered upon recovery onto 0.2 µm sterivex filters using a peristaltic pump. Water was stored at 4°C prior to filtration. Sterivex filters were stored at -80°C. #### **Data Processing Description** #### **BCO-DMO Processing Notes:** - added conventional header with dataset name, PI name, version date - modified parameter names to conform with BCO-DMO naming conventions - blank values were replaced with no data value 'nd' ## **Data Files** File Niskin_log.csv(Comma Separated Values (.csv), 7.70 KB) MD5:b86441ba80daa00e850855b8e4a6af4c Primary data file for dataset ID 715752 [table of contents | back to top] ## **Parameters** | Parameter | Description | Units | |--------------|--|--------------------------------| | Date | sampling date | unitess | | Dive_or_CTD | Alvin dive number | unitess | | Niskin_num | Niskin bottle number | unitess | | SN_num | lab serial number for sample | unitess | | Depth_m | sample depth | meters | | Lat | latitude; north is positive | decimal degrees | | Lon | longitude; east is positive | decimal degrees | | Region | region sampled | unitess | | Site | site sampled | unitess | | Habitat | biological or physical observations at sampling location | unitess | | Paired_With | other samples and incubations from the same CTD cast | unitess | | Vol_Filtered | volume of water filtered | liters | | Temp_C | temperature | degrees Celsius | | Salinity | salinity | Practical Salinity Units (PSU) | | Oxygen_uM | oxygen concentration | microMol Oxygen | | Notes | comments pertaining to sampling | unitess | [table of contents | back to top] ## Instruments | Dataset-
specific
Instrument
Name | SeaBird 911+ CTD with SBE3T/SBE4C sensor system | |--|---| | Generic
Instrument
Name | CTD - profiler | | | The Conductivity, Temperature, Depth (CTD) unit is an integrated instrument package designed to measure the conductivity, temperature, and pressure (depth) of the water column. The instrument is lowered via cable through the water column. It permits scientists to observe the physical properties in real-time via a conducting cable, which is typically connected to a CTD to a deck unit and computer on a ship. The CTD is often configured with additional optional sensors including fluorometers, transmissometers and/or radiometers. It is often combined with a Rosette of water sampling bottles (e.g. Niskin, GO-FLO) for collecting discrete water samples during the cast. This term applies to profiling CTDs. For fixed CTDs, see https://www.bco-dmo.org/instrument/869934 . | | Dataset-
specific
Instrument
Name | | |--|---| | Generic
Instrument
Name | Niskin bottle | | Dataset-
specific
Description | 24 each10-liter Niskin bottles | | | A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc. | | Dataset-specific
Instrument
Name | | |--|--| | Generic
Instrument
Name | Sea-Bird SBE 43 Dissolved Oxygen Sensor | | | The Sea-Bird SBE 43 dissolved oxygen sensor is a redesign of the Clark polarographic membrane type of dissolved oxygen sensors. more information from Sea-Bird Electronics | [table of contents | back to top] ## **Deployments** AT37-13 | Website | https://www.bco-dmo.org/deployment/714567 | |-------------|--| | Platform | R/V Atlantis | | Start Date | 2017-05-20 | | End Date | 2017-06-11 | | Description | More cruise information is available from Rolling Deck to Repository (R2R): * https://www.rvdata.us/search/cruise/AT37-13 * https://doi.org/10.7284/907684 | #### AT37-13 Alvin Dives | Website | https://www.bco-dmo.org/deployment/715760 | |-------------|--| | Platform | Alvin | | Start Date | 2017-05-21 | | End Date | 2017-06-08 | | Description | Collections of seep organisms in sediments and on rocks. | #### [table of contents | back to top] ## **Project Information** Collaborative research: Quantifying the biological, chemical, and physical linkages between chemosynthetic communities and the surrounding deep sea (Costa Rica Seeps) **Coverage**: Costa Rica Pacific Margin #### NSF abstract: If life were to disappear from the deep sea, would we notice? We only have a cursory understanding of this vast region and the connectivity among its communities and the rest of the oceans, and yet the ecosystems of the deep sea have been implicated in the larger function of the global marine ecosystems. We now rely on the deep ocean for food, energy, novel drugs and materials, and for its role in the global cycling of carbon, as well as for supporting services such as habitat creation, nutrient replenishment for shallow waters, and the maintenance of biodiversity. Cold seeps, active areas of the seafloor where methane and other chemicals are released, are key features along the continental margins worldwide. To characterize how methane seep communities interact with the surrounding ecosystems and vice versa, we will study methane seeps off the Pacific coast of Costa Rica in 2017 and 2018. It is the sphere of influence around the seep, both along the seafloor and up into the water column, that we seek to better understand. We will map the structure and the chemistry surrounding these habitats using a novel 3-dimensional framework, combining typical transects with vertical characterizations of the water column just above the seafloor. This will include measurements of methane flux into the water column and changes in the overlying carbonate chemistry and oxygen levels that are critical to our understanding of the effect of warming, oxygen loss and ocean acidification in this region. Within this framework, we will collect seep organisms in sediments and on rocks (including all sizes from microbes to large animals), and transplant some of these from within the area of seep influence to the background deep sea, and vice-versa. Together, these studies will help us to measure the size of the seep sphere of influence, and also demonstrate the role of these seeps within the deep sea and the greater, global, marine ecosystem. We will share this information with a group of teachers during a series of workshops in the San Diego area, at an exhibit at the Birch Aguarium, and through the work of an artist who has worked extensively with marine organisms in extreme environments. Chemosynthetic ecosystems are inextricably linked to the broader world-ocean biome and global biogeochemical cycles in ways that we are just beginning to understand. This research will identify the form, extent, and nature of the physical, chemical, and biological linkages between methane seeps and the surrounding deep-sea ecosystem. The proposed research builds critical understanding of the structural and functional processes that underpin the ecosystem services provided by chemosynthetic ecosystems. We target a critical continental margin, Costa Rica, where methane fates and dynamics loom large and play out in an setting that reflects many oceanographic stressors. We will use quantitative sampling and manipulative studies within a 3-dimensional oceanographic framework. We will ask what are the shapes of the diversity and density functions for organisms of different size classes and trophic position over the transition from the seep habitat through the ecotone to the background deep sea? Further, we will ask how do depth, dissolved oxygen concentrations, pH and carbonate ion availability, relative rates of fluid flux, and substrate (biogenic, authigenic carbonate, sediments) alter these linkages and interactions with the surrounding deep sea? Evidence for distinct transitional communities and biotic patterns in density and alpha and beta diversity will be quantified and placed in a global biogeographic context. All of these investigations will occur across biological size spectra: for microorganisms (archaea, bacteria, microeukaryotes), the macrofauna, and the megafauna that form biogenic habitats. Our research results will be interpreted in the context of potential effects of global ocean change in the equatorial Pacific to determine how the linkages with the surrounding deep sea will be altered as anthropogenic impacts proceed in the future. ## Related publications: Levin, L.A., V.J. Orphan, G.W. Rouse, W. Ussler, A. E. Rathburn, G. S. Cook, S. Goffredi, E. Perez, A. Waren, B. Grupe, G. Chadwick, B. Strickrott. (2012). A hydrothermal seep on the Costa Rica margin: Middle ground in a continuum of reducing ecosystems. *Proc. Royal Soc. B.* 279: 2580-88 doi: 10.1098/rspb.2012.0205 Sahling, H., Masson, D. G., Ranero, C. R., Hühnerbach, V., Weinrebe, W., Klaucke, I., & Suess, E. (2008). Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. *Geochemistry, Geophysics, Geosystems* 9: doi: 10.1029/2008GC001978 ## [table of contents | back to top] ## **Funding** | Funding Source | Award | |--|-------------| | NSF Division of Ocean Sciences (NSF OCE) | OCE-1634002 | [table of contents | back to top]