Dataset: CTD data and analyses of bottles from CTD rosette samples collected on R/V Hugh R. Sharp cruise HRS1415 in August 2014

ValidatedFinal no updates expectedDOI: 10.1575/1912/bco-dmo.717687.1Version 1 (2017-11-06)Dataset Type:Cruise Results

Principal Investigator: George W. Luther (University of Delaware)

Co-Principal Investigator: Bradley M. Tebo (Oregon Health & Science University)

BCO-DMO Data Manager: Shannon Rauch (Woods Hole Oceanographic Institution)


Project: The role of soluble Mn(III) in the biogeochemical coupling of the Mn, Fe and sulfur cycles (Soluble ManganeseIII)


Abstract

CTD data and analyses of bottles from CTD rosette samples collected on cruise HRS1415.

CTD data and analyses of bottles from CTD rosette samples collected on cruise HRS1415.

Field Papers published as a result of this project (methods included):
Madison, A. S, B. M. Tebo, A. Mucci, B. Sundby and G. W. Luther, III. 2013. Abundant Mn(III) in porewaters is a major component of the sedimentary redox system. Science 341, 875-878.  http://dx.doi.org/10.1126/science.1241396

MacDonald, D. J., A. J. Findlay, S. M. McAllister, J. M. Barnett, P. Hredzak-Showalter, S. T. Krepski, S. G. Cone, J. Scott, S. K. Bennett, C. S. Chan, D. Emerson and G.W. Luther III. 2014. Using in situ voltammetry as a tool to search for iron oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environmental Science: Processes & Impacts 16, 2117-2126. http://dx.DOI.org/10.1039/c4em00073k

Findlay, A. J., A. Gartman, D. J. MacDonald, T. E. Hanson, T. J. Shaw and G. W. Luther, III. 2014. Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge. Geochimica Cosmochimica Acta 142, 334-348. http://dx.doi.org/10.1016/j.gca.2014.07.032

Oldham, V. O., S. M. Owings, M. Jones, B. M. Tebo and G. W. Luther, III. 2015. Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Marine Chemistry 171, 58-66. http://dx.doi.org/10.1016/j.marchem.2015.02.008

Luther, G.W. III, A.S. Madison, A. Mucci, B. Sundby and V. E. Oldham. 2015. A kinetic approach to assess the strengths of ligands bound to soluble Mn(III). Marine Chemistry 173, 93-99. http://dx.doi.org/10.1016/j.marchem.2014.09.006

Findlay, A. J., A. J. Bennet, T. E. Hanson and G. W. Luther, III. 2015. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Applied and Environmental Microbiology 81(21), 7560-7569. http://dx.doi.org/10.1128/AEM.02062-15

Findlay, A. J., A. Gartman, D. J. MacDonald, T. E. Hanson, T. J. Shaw and G. W. Luther, III. 2014. Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge. Geochimica Cosmochimica Acta 142, 334-348. http://dx.doi.org/10.1016/j.gca.2014.07.032

Oldham, V. O., A. Mucci, B. M. Tebo and G.W. Luther III. 2017. Soluble Mn(III)-L complexes are ubiquitous in oxygenated waters and stabilized by humic ligands. Geochimica Cosmochimica Acta 199, 238-246. http://dx.doi.org/10.1016/j.gca.2016.11.043

Olson, L. K. A Quinn, M. G. Siebecker, G.W. Luther III, D. Hastings and J. Morford. 2017. Trace metal diagenesis in sulfidic sediments: Insights from Chesapeake Bay. Chemical Geology 452, 47-59. http://dx.doi.org/10.1016/j.chemgeo.2017.01.018

Oldham, V. O., M. T. Miller, Laramie T. Jensen and G.W. Luther III. 2017. Revisiting Mn and Fe removal in humic rich estuaries. Geochimica Cosmochimica Acta 209, 267-283. http://dx.doi.org/10.1016/j.gca.2017.04.001

Cai, W.-J, W.-J. Huang, G. Luther, III, D. Pierrot, M. Li, J. Testa, M. Xue, A. Joesoef, R. Mann, J. Brodeur, Y-Y Xu, B. Chen, N. Hussain, G. G. Waldbusser, J. Cornwell, and W. M. Kemp. 2017. Redox reactions and weak buffer capacity lead to acidification in the Chesapeake Bay. Nature Communications 8, Article number: 369. http://dx.doi.org/10.1038/s41467-017-00417-7

Findlay, A. J., D. M. Di Toro and G. W. Luther, III. 2017. A model of phototrophic sulfide oxidation in a stratified estuary. Limnology & Oceanography 62, 1853-1867. http://dx.doi.org/10.1002/lno.10539

Oldham, V. O., M. R. Jones, B. M. Tebo and G.W. Luther III. 2017. Oxidative and reductive processes contributing to manganese cycling at oxic-anoxic interfaces. Marine Chemistry, in press.


Related Datasets

No Related Datasets

Related Publications

Methods

Cai, W.-J., Huang, W.-J., Luther, G. W., Pierrot, D., Li, M., Testa, J., … Kemp, W. M. (2017). Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 8(1). doi:10.1038/s41467-017-00417-7
Methods

Findlay, A. J., Bennett, A. J., Hanson, T. E., & Luther, G. W. (2015). Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria. Applied and Environmental Microbiology, 81(21), 7560–7569. doi:10.1128/aem.02062-15
Methods

Findlay, A. J., Di Toro, D. M., & Luther, G. W. (2017). A model of phototrophic sulfide oxidation in a stratified estuary. Limnology and Oceanography, 62(5), 1853–1867. doi:10.1002/lno.10539
Methods

Findlay, A. J., Gartman, A., MacDonald, D. J., Hanson, T. E., Shaw, T. J., & Luther, G. W. (2014). Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 142, 334–348. doi:10.1016/j.gca.2014.07.032
Methods

Krumbein, W. E., & Altmann, H. J. (1973). A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgoländer Wissenschaftliche Meeresuntersuchungen, 25(2-3), 347–356. doi:10.1007/bf01611203