CO2 × temperature specific early life survival and growth of Menidia menidia assessed by 5 factorial experiments

Website: https://www.bco-dmo.org/dataset/732818

Data Type: Other Field Results, experimental

Version: 05 April 2018 **Version Date**: 2018-04-05

Project

» <u>Collaborative research</u>: <u>Understanding the effects of acidification and hypoxia within and across generations in a coastal marine fish (HYPOA)</u>

Contributors	Affiliation	Role
Baumann, Hannes	University of Connecticut (UConn)	Principal Investigator, Contact
Murray, Christopher S.	University of Connecticut (UConn - Avery Point)	Co-Principal Investigator
Nye, Janet	Stony Brook University - SoMAS (SUNY-SB SoMAS)	Co-Principal Investigator
Rauch, Shannon	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

In five individual rearing experiments, wild-caught M. menidia adults were spawned to test offspring sensitivity to factorial combinations of pCO2 (nominal: 400, 2200, 4000, and 6000 μ atm) and temperature (17, 20, 24, and 28 °C) through measurements of early-life survival and growth. For experiment 1, adults were collected from Poquot Beach (40.947376, -73.10258), and the experiment took place at Stony Brook University's Flax Pond Marine Laboratory. For experiments 2–5, spawning adults were collected from Mumford Cove (41.321526, -72.015247), and experiments were conducted in the Rankin Seawater Facility at University of Connecticut's Avery Point campus. The experiments quantified two survival and two growth traits for each replicate and CO2 × temperature treatment; embryo survival (fertilization to 1 dph), larval survival (1 dph to experiment termination), size (SL) at hatch (1 dph), and growth rate ((SL at end of experiment – SL 1dph)/number days reared post hatch). These data are published in: Murray, C.S., and Baumann, H. (2018) You Better Repeat It: Complex CO2 × Temperature Effects in Atlantic Silverside Offspring Revealed by Serial experimentation. Diversity. doi:10.3390/d10030069.

Table of Contents

- Coverage
- Dataset Description
 - Methods & Sampling
 - Data Processing Description
- Data Files
- Related Publications
- Parameters
- <u>Instruments</u>
- <u>Deployments</u>
- Project Information
- Funding

Coverage

Spatial Extent: N:41.321526 **E**:-72.015247 **S**:40.947376 **W**:-73.10258

Temporal Extent: 2014-05-05 - 2017-06-01

Dataset Description

CO2 x temperature specific early life survival and growth assessed by 5 factorial experiments.

These data are published in: Murray, C.S. & Baumann, H. 2018 You better repeat it: complex temperature \times CO2 effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10, 1-19. doi:10.3390/d10030069

Methods & Sampling

CO2 × temperature manipulations and measurements:

For 2×2 and 3×2 factorial designs, replicate rearing containers (20 L) were placed into large temperaturecontrolled water baths. Elevated CO2 levels were achieved via gas proportioners (ColeParmer®) mixing air with 100% CO₂ (bone dry grade) that was delivered continuously to the bottom of each replicate rearing container via airstone. To counteract metabolic CO₂ accumulation, control CO₂ conditions were achieved by forcing compressed laboratory air through a series of CO₂ stripping units containing granular soda lime (AirGas®), a particle filter (1 µm), and then to each replicate via airstone. Target pH levels were monitored daily using a handheld pH probes (Orion Ross Ultra pH/ATC Triode with Orion Star A121 pH Portable Meter; Intellical PHC281 pH Electrode with Hach® HQ11D Handheld pH/ORP Meter) calibrated bi-weekly with 2-point pH_{NBS} references. Continuous bubbling maintained dissolved oxygen saturation (>8 mg/DO) in rearing vessels. Target treatment temperatures were controlled by thermostats (Aqualogic®) which powered chillers (DeltaStar®) or glass submersible heaters to maintain water bath temperatures. For 3 × 3 factorial experiments, we developed an automated acidification system composed of nine discrete recirculation units designed for larval fish rearing. We designed a LabView (National Instruments®) based program to fully automate the control of seawater chemistry. The software interfaces with the recirculating units via a data-acquisition module (NI cDAQ-9184, National Instruments®), which controls nine sampling pumps (one per tank) and a series of gas and water solenoid valves, while receiving input from a central pH electrode (Hach pHD® digital electrode calibrated weekly using 2-point pH_{NBS} references) and dissolved oxygen probe (Hach LDO® Model 2). The software sequentially assesses the pH conditions in each rearing unit (each tank once per hour) by pumping water for ~450 seconds through the housing of the central pH probe, comparing measured pH levels to set-points and then adjusting levels by bubbling standardized amounts 100% CO₂ (bone dry grade, AirGas[®]) or CO₂-stripped air into the sump of each tank. The software also maintains DO saturation (>8 mg/l) by bubbling in CO₂stripped air. LabView logs current pH, temperature, and DO conditions before cycling to the next unit. Temperatures were controlled by thermostats (Aqualogic®) that powered submersible heaters or in-line chillers (DeltaStar®).

Actual treatment CO_2 levels were determined based on measurements of pH, temperature, salinity, and total alkalinity (A_T). Treatment tanks were sampled three times per experiment for measurements of A_T (µmol kg⁻¹). Seawater was siphoned and filtered (to 10 µm) into 300 ml borosilicate bottles. Salinity was measured at the time of sampling using a refractometer. Bottles were stored at 3°C and measured for A_T within two weeks of sampling using an endpoint titration (Mettler Toledo[®] G20 Potentiometric Titrator). Methodological accuracy (within ±1%) of alkalinity titrations were verified and calibrated using Dr. Andrew Dickson's (University of California San Diego, Scripps Institution of Oceanography) certified reference material for A_T in seawater. The partial pressure of CO_2 (p CO_2 ,; µatm) was calculated in CO2SYS (V2.1, http://cdiac.ornl.gov/ftp/co2sys) based on measured A_T , p H_{NBS} , temperature, and salinity using K1 and K2 constants from Mehrbach et al. (1973) refit by Dickson and Millero (1987) and Dickson (1990) for KHSO₄.

Field sampling and experimental designs:

Collections of wild, spawning ripe Atlantic silversides were made during high tide 1-3 days prior to full or new moons during the species spawning season. Adults were caught with a 30 m \times 2 m beach seine from local salt marshes and transported live to our laboratory facilities. Ripe adults were held overnight at 20°C in well aerated tanks at low densities with no food and strip spawned the next day.

For each experiment, eggs from 20+ running-ripe females were gently mixed into shallow plastic dishes lined with 1 mm plastic window screening. 20+ males were stripped-spawned together into 500 ml glass beakers, mixed with seawater, stirred, then gently poured into spawning dishes and mixed with eggs for \sim 15 minutes. Screens were rinsed with seawater to remove unfertilized eggs and then soaked in a 100 ppm buffered iodine (Ovadine®) solution for 15 minutes to prevent fungal infection. Experiments were initiated within two hours of

fertilization when replicate rearing vessels received precisely 100 embryos. Vessels were filled with clean seawater (filtered to 1 μ m and UV sterilized). Optimal salinity (27-31) and light conditions (15 h light:9 h dark) for rearing *M. menidia* were maintained across experiments. Upon hatching larvae were immediately provided *ad libitum* rations of newly hatched brine shrimp nauplii (*Artemia salina*, San Francisco strain, brineshrimpdirect.com) and equal rations of powdered weaning diet (Otohime Marine Fish Diet, size A1, Reed Mariculture®). To quantify hatching survival, one day post first hatch larvae were counted by gently scooping small groups into replacement rearing vessels. For initial hatch measurements, random sub-samples (N = 10) from each replicate were preserved in 5% formaldehyde/freshwater solution buffered with saturated sodium tetraborate. All experiments were terminated when larvae reached ~10 mm standard length (SL). At termination, all survivors were counted and measured for standard length (SL, nearest 0.01 mm) via calibrated digital images (Image Pro Premier® V9.0).

Data Processing Description

BCO-DMO Processing:

- modified parameter names to conform with BCO-DMO naming conventions (replaced spaces with underscores);
- changed date format from mm/dd/yyyy to yyyy/mm/dd;
- replaced "n/a" with "nd";
- replaced spaces with underscores in columns: species, adult_collection_site;
- removed commas from adult collection site field;
- replaced original lat/lon values with decimal degree values provided by PI.

[table of contents | back to top]

Data Files

File

CO2_x_temp.csv(Comma Separated Values (.csv), 18.50 KB)
MD5:53558682a9b484dcde2c0de4ea931f94

Primary data file for dataset ID 732818

[table of contents | back to top]

Related Publications

Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq) and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics, 22(2), 113–127. doi:10.1016/0021-9614(90)90074-z https://doi.org/10.1016/0021-9614(90)90074-z

Methods

Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34(10), 1733–1743. doi:10.1016/0198-0149(87)90021-5

Methods

Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18(6), 897–907. doi:10.4319/lo.1973.18.6.0897

Methods

Murray, C., & Baumann, H. (2018). You Better Repeat It: Complex CO2 \times Temperature Effects in Atlantic Silverside Offspring Revealed by Serial Experimentation. Diversity, 10(3), 69. doi: 10.3390/d10030069 Results

[table of contents | back to top]

Parameters

Parameter	Description	Units
experiment	Experiment number	unitless
species	Scientific name of the speices (Menidia menidia, the Atlantic silverside)	unitless
adult_collection_site	Site of the collection of wild adult spawners	unitless
latitude	Latitude of adult collection site	decimal degrees
longitude	Longitude of adult collection site	decimal degrees
tank	Tank number	unitless
replicate	Within experiment replicate number	unitless
temperature	Average temperature experienced by fish in degrees celsius	degrees Celsius
рН	Average pH level experienced by the fish NBS	pH NBS
pCO2	Calculated average pCO2 levels in μ atm calculated by CO2SYS based on alkalinity, pH, and temperature	atm
fertilization_date	Date offspring were fertilized by stripspawning 20+ adults of each sex; formatted as yyyy/mm/dd	unitless
hatch_sample_date	Date offspring were sampled for hatch survival and measurements; formatted as yyyy/mm/dd	unitless
hatch_sample_age	Age in days post fertilization (dpf) on the date of hatch sampling	days
final_sample_date	Date offspring were sampled for final survival and measurements; formatted as yyyy/mm/dd	unitless
final_sample_age	Age in days post fertilization (dpf) on the date of final sampling	days
rel_embryo_survival	relative survival of embryos (0-1)	unitless (fraction)
rel_larval_survival	relative survival from hatch to experiment termination (0-1)	unitless (fraction)
hatch_length	Average replicate hatch length (mm)	millimeters (mm)
final_length	Average replicate final length (mm)	millimeters (mm)
growth_rate	average replicate growth rate (mm d-1) of offspring from hatch to experiment termination	millimeters per day (mm d-1)

[table of contents | back to top]

Instruments

Dataset- specific Instrument Name	airstone
Generic Instrument Name	Airstone
Dataset- specific Description	Elevated CO2 levels were achieved via gas proportioners (ColeParmer) mixing air with 100% CO2 (bone dry grade) that was delivered continuously to the bottom of each replicate rearing container via airstone.
Generic Instrument Description	Airstone - Also called an aquarium bubbler, is a piece of aquarium furniture, traditionally a piece of limewood or porous stone, whose purpose is to gradually diffuse air into the tank, eliminating the noise and large bubbles of conventional air filtration systems

Dataset-specific Instrument Name	DeltaStar chiller
Generic Instrument Name	Aquarium chiller
Dataset-specific Description	Target treatment temperatures were controlled by thermostats (Aqualogic) which powered chillers (DeltaStar) or glass submersible heaters to maintain water bath temperatures.
Generic Instrument Description	Immersible or in-line liquid cooling device, usually with temperature control.

Instrument Name	Mettler Toledo G20 Potentiometric Titrator
Generic Instrument Name	Automatic titrator
Dataset-specific Description	Bottles were stored at 3°C and measured for AT within two weeks of sampling using an endpoint titration (Mettler Toledo G20 Potentiometric Titrator).
	Instruments that incrementally add quantified aliquots of a reagent to a sample until the end-point of a chemical reaction is reached.

Dataset-specific Instrument Name	glass submersible heaters
Generic Instrument Name	Immersion heater
Dataset-specific Description	Target treatment temperatures were controlled by thermostats (Aqualogic) which powered chillers (DeltaStar) or glass submersible heaters to maintain water bath temperatures.
Generic Instrument Description	Submersible heating element for water tanks and aquaria.

Dataset-specific Instrument Name	dissolved oxygen probe
Generic Instrument Name	Oxygen Sensor
Generic Instrument Description	An electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed

Dataset- specific Instrument Name	handheld pH probe
Generic Instrument Name	pH Sensor
Dataset- specific Description	Target pH levels were monitored daily using a handheld pH probes (Orion Ross Ultra pH/ATC Triode with Orion Star A121 pH Portable Meter; Intellical PHC281 pH Electrode with Hach HQ11D Handheld pH/ORP Meter) calibrated bi-weekly with 2-point pHNBS references.
Generic Instrument Description	An instrument that measures the hydrogen ion activity in solutions. The overall concentration of hydrogen ions is inversely related to its pH. The pH scale ranges from 0 to 14 and indicates whether acidic (more $H+$) or basic (less $H+$).

Dataset- specific Instrument Name	refractometer
Generic Instrument Name	Refractometer
Dataset- specific Description	Salinity was measured at the time of sampling using a refractometer.
	A refractometer is a laboratory or field device for the measurement of an index of refraction (refractometry). The index of refraction is calculated from Snell's law and can be calculated from the composition of the material using the Gladstone-Dale relation. In optics the refractive index (or index of refraction) n of a substance (optical medium) is a dimensionless number that describes how light, or any other radiation, propagates through that medium.

Dataset- specific Instrument Name	beach seine
Generic Instrument Name	Seine Net
Dataset- specific Description	Adults were caught with a 30 m \times 2 m beach seine from local salt marshes and transported live to our laboratory facilities.
Description	A seine net is a very long net, with or without a bag in the centre, which is set either from the shore or from a boat for surrounding a certain area and is operated with two (long) ropes fixed to its ends (for hauling and herding the fish). Seine nets are operated both in inland and in marine waters. The surrounded and catching area depends on the length of the seine and of the hauling lines. (definition from: fao.org)

[table of contents | back to top]

Deployments

Mumford Cove Subsurface Buoy

Mannora_cove_subsurface_baby	
Website	https://www.bco-dmo.org/deployment/659887
Platform	Avery_Point
Start Date	2015-04-04
Description	Local subsurface buoy in Mumford Cove, CT, a shallow, coastal embayment in outer Long Island Sound, US Atlantic coast.

Poquot_Beach

Website	https://www.bco-dmo.org/deployment/733075
Platform	Avery_Point

[table of contents | back to top]

Project Information

Collaborative research: Understanding the effects of acidification and hypoxia within and across generations in a coastal marine fish (HYPOA)

Coverage: Eastern Long Island Sound, CT, USA

Description from NSF award abstract:

Coastal marine ecosystems provide a number of important services and resources for humans, and at the same time, coastal waters are subject to environmental stressors such as increases in ocean acidification and reductions in dissolved oxygen. The effects of these stressors on coastal marine organisms remain poorly understood because most research to date has examined the sensitivity of species to one factor, but not to more than one in combination. This project will determine how a model fish species, the Atlantic silverside, will respond to observed and predicted levels of dissolved carbon dioxide (CO2) and oxygen (O2). Shorter-term experiments will measure embryo and larval survival, growth, and metabolism, and determine whether parents experiencing stressful conditions produce more robust offspring. Longer-term experiments will study the consequences of ocean acidification over the entire life span by quantifying the effects of high-CO2 conditions on the ratio of males to females, lifetime growth, and reproductive investment. These studies will provide a more comprehensive view of how multiple stressors may impact populations of Atlantic silversides and potentially other important forage fish species. This collaborative project will support and train three graduate students at the University of Connecticut and the Stony Brook University (NY), two institutions that attract students from minority groups. It will also provide a variety of opportunities for undergraduates to participate in research and the public to learn about the study, through summer research projects, incorporation in the "Women in Science and Engineering" program, and interactive displays of environmental data from monitoring buoys. The two early-career investigators are committed to increasing ocean literacy and awareness of NSFfunded research through public talks and presentations.

This project responds to the recognized need for multi-stressor assessments of species sensitivities to anthropogenic environmental change. It will combine environmental monitoring with advanced experimental approaches to characterize early and whole life consequences of acidification and hypoxia in the Atlantic silverside (Menidia menidia), a valued model species and important forage fish along most of the US east coast. Experiments will employ a newly constructed, computer-controlled fish rearing system to allow independent and combined manipulation of seawater pCO2 and dissolved oxygen (DO) content and the application of static and fluctuating pCO2 and DO levels that were chosen to represent contemporary and potential future scenarios in productive coastal habitats. First CO2, DO, and CO2 × DO dependent reaction norms will be quantified for fitness-relevant early life history (ELH) traits including pre- and post-hatch survival, time to hatch, post-hatch growth, by rearing offspring collected from wild adults from fertilization to 20 days post hatch (dph) using a full factorial design of 3 CO2 × 3 DO levels. Second, the effects of tidal and diel CO2 × DO fluctuations of different amplitudes on silverside ELH traits will be quantified. To address knowledge gaps regarding the CO2-sensitivity in this species, laboratory manipulations of adult spawner environments and reciprocal offspring exposure experiments will elucidate the role of transgenerational plasticity as a potential short-term mechanism to cope with changing environments. To better understand the mechanisms of fish early life CO2-sensitivity, the effects of temperature × CO2 on pre- and post-hatch metabolism will be robustly quantified. The final objective is to rear silversides from fertilization to maturity under different CO2 levels and assess potential CO2-effects on sex ratio and whole life growth and fecundity.

Related references:

Gobler, C.J. and Baumann, H. (2016) Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life. Biology Letters 12:20150976. doi:10.1098/rsbl.2015.0976

Baumann, H. (2016) Combined effects of ocean acidification, warming, and hypoxia on marine organisms. Limnology and Oceanography e-Lectures 6:1-43. doi:10.1002/loe2.10002

Depasquale, E., Baumann, H., and Gobler, C.J. (2015) Variation in early life stage vulnerability among Northwest Atlantic estuarine forage fish to ocean acidification and low oxygen Marine Ecology Progress Series 523: 145–156.doi:10.3354/meps11142

[table of contents | back to top]

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	OCE-1536336

[table of contents | back to top]