Contributors | Affiliation | Role |
---|---|---|
Sedwick, Peter N. | Old Dominion University (ODU) | Principal Investigator, Contact |
Mulholland, Margaret | Old Dominion University (ODU) | Co-Principal Investigator |
Najjar, Raymond | Pennsylvania State University (PSU) | Co-Principal Investigator |
York, Amber D. | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Experimental seawater collection: For shipboard bioassay experiments, whole seawater and resident biota were collected from ~4 m depth whilst underway at ~5 knots, using a trace-metal clean towfish system (Sedwick et al., 2011). This seawater was used to fill two 60 L polyethylene carboys in parallel inside a shipboard trace-metal clean container laboratory, after passing through pre-cleaned 180 µm nylon screen to exclude larger organisms, then subsequently used to fill the experimental incubation bottles (see below). Three bioassay experiments were performed (Sedwick et al., 2018), for which seawater was collected during three separate deployments of the towfish system.
For bioassay experiment 1, seawater was collected on 1 August, 2014, between 16:55 and 17:35 local time, between 38.6053°N, 72.2534°W (start) and 38.5692°N, 72.2354°W (end). Single determinations of iron and macronutrient concentrations in seawater from the towfish that was filtered in-line through a 0.8/0.2 µm AcroPak Supor filter capsule (Pall) yielded the following results:
Dissolved iron (DFe): 0.55 nM (start), 0.43 nM (end)
Dissolved nitrate+nitrite (NO3+NO2): 0.07 µM (start) 0.08 µM (end)
Dissolved phosphate (PO4): 0.19 µM (start), 0.20 µM (end)
Dissolved ammonium (NH4): not determined
For bioassay experiment 2, seawater was collected on 4 August, 2014, between 11:10 and 12:10 local time, between 38.3800°N, 72.4743°W (start) and 38.3847°N, 72.4761°W (end). Single determinations of iron and macronutrient concentrations in seawater from the towfish that was filtered in-line through a 0.8/0.2 µm AcroPak Supor filter capsule (Pall) yielded the following results:
Dissolved iron (DFe): 0.33 nM (start), 0.32 nM (end)
Dissolved nitrate+nitrite (NO3+NO2): 0.07 µM (start) 0.07 µM (end)
Dissolved phosphate (PO4): 0.19 µM (start), 0.20 µM (end)
Dissolved ammonium (NH4): 0.01 µM (start), 0.01 µM (end)
For bioassay experiment 3, seawater was collected on 9 August, 2014, between 15:19 and 15:54 local time, between 35.5305°N, 72.2760°W (start) and 35.5165°N, 72.2703°W (end). Single determinations of iron and macronutrient concentrations in seawater from the towfish that was filtered in-line through a 0.8/0.2 µm AcroPak Supor filter capsule (Pall) yielded the following results:
Dissolved iron (DFe): 0.89 nM (start), 0.90 nM (end)
Dissolved nitrate+nitrite (NO3+NO2): 0.05 µM (start) 0.07 µM (end)
Dissolved phosphate (PO4): not determined
Dissolved ammonium (NH4): 0.03 µM (start), 0.01 µM (end)
Bioassay experiment protocols: The shipboard bioassay experimental protocols are described by Sedwick et al. (2018). For each experiment there were 6 different incubation treatments (control, iron, nitrate, nitrate+iron, nitrate+iron+phosphate, rainwater), with triplicate bottles for each treatment sampled at each of three timepoints. Each bottle was completely subsampled for measurements of nutrients (NO3+NO2, NH4), chlorophyll-a and primary productivity. For the initial (time = 0) measurements, the seawater that remained in the 60 L polyethylene carboys after filling the incubation bottles was transfered into a 20 L polyethylene carboy from which subsamples were taken for measurements of NO3+NO2 after filtration through 0.8 µm pore size AcroDisc Supor syringe filters (Pall), for chlorophyll-a after filtration on to combusted 0.7 µm pore size GF/F filters (Whatman), and for incubation with carbon-13 labeled bicarbonate for estimation of primary production. For initial (t = 0) NH4 concentrations, we use mean values measured in seawater sampled from the towfish outlet after in-line filtration (see above).
Analytical procedures:
DFe: Filtered seawater samples were acidified at-sea to pH ~1.8 with Fisher Optima grade ultrapure hydrochloric acid, and then stored at room temperature until post-cruise analysis at Old Dominion University. Dissolved iron was determined by flow injection analysis with colorimetric detection after in-line preconcentration on resin-immobilized 8-hydroxyquinoline (Sedwick et al., 2015), using a method modified from Measures et al. (1995). Analyses were performed on a volumetric basis, so concentrations are reported in units of nanomole liter-1 (nM). Analytical precision is estimated from multiple (separate-day) determinations of the SAFe seawater reference materials, which yield uncertainties (expressed as one relative standard deviation on the mean, or one sigma) of ~15% at the concentration level of SAFe S seawater (0.090 nM), and ~10% at the concentration level of SAFe D2 seawater (0.90 nM). The analytical limit of detection is estimated as the DFe concentration equivalent to a peak area that is three times the standard deviation on the zero-loading blank (manifold blank), which yields an estimated detection limit below 0.04 nM (Bowie et al., 2004). Blank contributions from the ammonium acetate sample buffer solution (added on-line during analysis) and hydrochloric acid (added after collection) are negligible.
NO3+NO2: Dissolved nitrate and nitrite was determined at sea using an Astoria Pacific nutrient autoanalyzer using standard colorimetric methods with an estimated detection limit of 0.14 µM (Parsons et al., 1984; Price and Harrison, 1987). In surface waters, nitrate and nitrite were determined using the same autoanalyzer equipped with a liquid waveguide capillary cell (World Precision Instruments) (Zhang, 2000) to achieve an estimated detection limit of 0.02 µM.
PO4: Dissolved phosphate was determined at sea using an Astoria Pacific nutrient autoanalyzer using standard colorimetric methods with an estimated detection limit of 0.03 µM (Parsons et al., 1984; Price and Harrison, 1987).
NH4: Dissolved ammonium was determined at sea using the manual orthophthaldialdehyde method (Holmes et al., 1999), with an estimated detection limit of 10 nM.
Chl-a: Chlorophyll-a was determined at sea using the non-acidification method with a Turner 10-AU fluorometer (Welschmeyer, 1994).
PP: Primary production was measured using carbon stable istopes (Mulholland et al., 2006).
Missing data identifiers:
ND = not determined (single measurement)
NR = not reported (contamination likely, only used for NH4 data)
Please note that this dataset containing statistical averages (mean and sd) will be updated in future to provide the unaggregated individual measurements.
BCO-DMO Data Manager Processing Notes:
* added a conventional header with dataset name, PI name, version date
* modified parameter names to conform with BCO-DMO naming conventions
File |
---|
bioassays.csv (Comma Separated Values (.csv), 3.08 KB) MD5:f58a2cd16dd8c5535b36d021e3334c38 Primary data file for dataset ID 734364 |
Parameter | Description | Units |
experiment | bioassay experiment identifier (1, 2 or 3) | unitless |
treatment | Experimental amendment: start = unamended starting seawater; C = control (unamended); N = +nitrate; Fe = +iron; N+Fe = +nitrate+iron; N+Fe+P = +nitrate+iron+phosphate; rain = +rainwater | unitless |
time | incubation time (elapsed time) | hours |
mean_NO3_NO2 | Mean nitrate plus nitrite concentration | micromoles per liter (umol/L) |
SD_NO3_NO2 | Standard deviation of mean nitrate plus nitrite concentration | micromoles per liter (umol/L) |
mean_NH4 | Mean ammonium concentration | micromoles per liter (umol/L) |
SD_NH4 | Standard deviation of the mean ammonium concentration | micromoles per liter (umol/L) |
mean_Chl_a | Mean chlorophyll-a concentration | micrograms per liter (mg/L) |
SD_Chl_a | Standard deviation of the mean Chl-a | micrograms per liter (mg/L) |
mean_PP | mean primary productivity | micromoles C per liter per day (umol C/L/d) |
SD_PP | Standard deviation of mean primary productivity | micromoles C per liter per day (umol C/L/d) |
Dataset-specific Instrument Name | Shimadzu RF1501 |
Generic Instrument Name | Fluorometer |
Dataset-specific Description | Spectrofluorophotometer: NH4 |
Generic Instrument Description | A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ. |
Dataset-specific Instrument Name | Turner Designs 10-AU fluorometer |
Generic Instrument Name | Fluorometer |
Dataset-specific Description | Fluorometer: Chl-a |
Generic Instrument Description | A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ. |
Dataset-specific Instrument Name | Europa 20/20 isotope ratio mass spectrometer |
Generic Instrument Name | Mass Spectrometer |
Dataset-specific Description | Mass Spectrometer (PP): Europa 20/20 isotope ratio mass spectrometer equipped with an automated nitrogen and carbon analysis for gas, solids, and liquids (ANCA-GSL) preparation module. |
Generic Instrument Description | General term for instruments used to measure the mass-to-charge ratio of ions; generally used to find the composition of a sample by generating a mass spectrum representing the masses of sample components. |
Dataset-specific Instrument Name | Astoria Pacific nutrient autoanalyzer |
Generic Instrument Name | Nutrient Autoanalyzer |
Dataset-specific Description | Macronutrient analysis: NO3+NO2, PO4 |
Generic Instrument Description | Nutrient Autoanalyzer is a generic term used when specific type, make and model were not specified. In general, a Nutrient Autoanalyzer is an automated flow-thru system for doing nutrient analysis (nitrate, ammonium, orthophosphate, and silicate) on seawater samples. |
Website | |
Platform | R/V Hugh R. Sharp |
Start Date | 2014-07-29 |
End Date | 2014-08-16 |
NSF abstract:
Deposition of atmospheric nitrogen provides reactive nitrogen species that influence primary production in nitrogen-limited regions. Although it is generally assumed that these species in precipitation contributes substantially to anthropogenic nitrogen loadings in many coastal marine systems, its biological impact remains poorly understood. Scientists from Pennsylvania State University, William & Mary College, and Old Dominion University will carry out a process-oriented field and modeling effort to test the hypothesis that deposits of wet atmospheric nitrogen (i.e., precipitation) stimulate primary productivity and accumulation of algal biomass in coastal waters following summer storms and this effect exceeds the associated biogeochemical responses to wind-induced mixing and increased stratification caused by surface freshening in oligotrophic coastal waters of the eastern United States. To attain their goal, the researchers would perform a Lagrangian field experiment during the summer months in coastal waters located between Delaware Bay and the coastal Carolinas to determine the response of surface-layer biogeochemistry and biology to precipitation events, which will be identified and intercepted using radar and satellite data. As regards the modeling effort, a 1-D upper ocean mixing model and a 1-D biogeochemical upper-ocean will be calibrated by assimilating the field data obtained a part of the study using the adjoint method. The hypothesis will be tested using sensitivity studies with the calibrated model combined with in-situ data and results from the incubation experiments. Lastly, to provide regional and historical context for the field measurements and the associated 1-D modeling, linked regional atmospheric-oceanic biogeochemical modeling will be conducted.
Broader Impacts. Results from the study would be incorporated into class lectures for graduate courses on marine policy and marine biogeochemistry. One graduate student from Pennsylvania State University, one graduate student from the College of William and Mary, and one graduate and one undergraduate student from Old Dominion University would be supported and trained as part of this project.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) | |
NSF Division of Ocean Sciences (NSF OCE) |