Contributors | Affiliation | Role |
---|---|---|
Kadko, David C. | Florida International University (FIU) | Principal Investigator |
Rauch, Shannon | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
A weighted sampling hose, attached to a submersible pump with a portable ctd was deployed over the aft of the ship to collect seawater for Be-7 analysis. The seawater was collected in plastic 700 liter holding tanks and then passed through iron-oxide impregnated acrylic fiber filters (adsorbs Be-7). The efficiency of the fiber for extraction of Be from seawater was determined by adding stable Be atomic absorption standards to a drum containing seawater, pumping the water through an iron fiber cartridge, and at every 100 L measuring the Be content of the cartridge effluent. Based on several trials, it was found that for sample volumes in the range 400-700L, extraction efficiencies are respectively, 82 ± 3% to 76 ± 2%. Some water was also collected from ice occupations, where water was pumped directly through fibers by means of a centrifugal pump on the ice. This was performed in a heated tent. Sample sizes varied from 1-3 fibers, each processing 400-700 L of seawater.
All fibers were returned to the lab where they were dried and ashed. Single fiber samples were pressed into pellets, and the combined ash from multi-fiber samples placed in Marinelli beakers. All samples were then placed over a low background germanium gamma detector. 7Be has a readily identifiable peak at 478keV. The detector is calibrated for these samples by adding a commercially prepared mixed solution of known gamma activities to ashed fiber and counting in the the appropriate geometry.
Please refer to: Kadko & Olson (1996) and Kadko et al. (2016) (full citations below).
bd = below detection limit.
BCO-DMO Processing:
- changed date format from mm/dd/yy to yyyy-mm-dd;
- replaced blanks (no data) with "nd".
File |
---|
Be-7.csv (Comma Separated Values (.csv), 3.98 KB) MD5:f2b6079a692b7a7bcb814926d129a017 Primary data file for dataset ID 743472 |
Parameter | Description | Units |
GEOTRC_EVENTNO | GEOTRACES event number | unitless |
STNNBR | Station number | unitless |
EVENT_LAT | Latitude at the start of the event; north is positive | decimal degrees |
EVENT_LON | Longitude at the start of the event; east is positive | decimal degrees |
depth | Sample depth | meters (m) |
Date | Date of sampling. Format: yyyy-mm-dd | unitless |
Be_7_D_CONC_PUMP | Seawater Be-7 activity concentration | microBecquerels per kilogram seawater (uBq/kg ) |
Be_7_D_CONC_PUMP_ERR | Seawater Be-7 activity error | microBecquerels per kilogram seawater (uBq/kg ) |
Dataset-specific Instrument Name | |
Generic Instrument Name | Pump |
Dataset-specific Description | A weighted sampling hose, attached to a submersible pump with a portable ctd was deployed over the aft of the ship to collect seawater for Be-7 analysis. |
Generic Instrument Description | A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action. Pumps can be classified into three major groups according to the method they use to move the fluid: direct lift, displacement, and gravity pumps |
Website | |
Platform | USCGC Healy |
Report | |
Start Date | 2015-08-09 |
End Date | 2015-10-12 |
Description | Arctic transect encompassing Bering and Chukchi Shelves and the Canadian, Makarov and Amundsen sub-basins of the Arctic Ocean. The transect started in the Bering Sea (60°N) and traveled northward across the Bering Shelf, through the Bering Strait and across the Chukchi shelf, then traversing along 170-180°W across the Alpha-Mendeleev and Lomonosov Ridges to the North Pole (Amundsen basin, 90°N), and then back southward along ~150°W to terminate on the Chukchi Shelf (72°N).
Additional cruise information is available in the GO-SHIP Cruise Report (PDF) and from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/HLY1502 |
Description from NSF award abstract:
In pursuit of its goal "to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions", in 2015 the International GEOTRACES Program will embark on several years of research in the Arctic Ocean. In a region where climate warming and general environmental change are occurring at amazing speed, research such as this is important for understanding the current state of Arctic Ocean geochemistry and for developing predictive capability as the regional ecosystem continues to warm and influence global oceanic and climatic conditions. The three investigators funded on this award, will manage a large team of U.S.scientists who will compete through the regular NSF proposal process to contribute their own unique expertise in marine trace metal, isotopic, and carbon cycle geochemistry to the U.S. effort. The three managers will be responsible for arranging and overseeing at-sea technical services such as hydrographic measurements, nutrient analyses, and around-the-clock management of on-deck sampling activites upon which all participants depend, and for organizing all pre- and post-cruise technical support and scientific meetings. The management team will also lead educational outreach activities for the general public in Nome and Barrow, Alaska, to explain the significance of the study to these communities and to learn from residents' insights on observed changes in the marine system. The project itself will provide for the support and training of a number of pre-doctoral students and post-doctoral researchers. Inasmuch as the Arctic Ocean is an epicenter of global climate change, findings of this study are expected to advance present capability to forecast changes in regional and globlal ecosystem and climate system functioning.
As the United States' contribution to the International GEOTRACES Arctic Ocean initiative, this project will be part of an ongoing multi-national effort to further scientific knowledge about trace elements and isotopes in the world ocean. This U.S. expedition will focus on the western Arctic Ocean in the boreal summer of 2015. The scientific team will consist of the management team funded through this award plus a team of scientists from U.S. academic institutions who will have successfully competed for and received NSF funds for specific science projects in time to participate in the final stages of cruise planning. The cruise track segments will include the Bering Strait, Chukchi shelf, and the deep Canada Basin. Several stations will be designated as so-called super stations for intense study of atmospheric aerosols, sea ice, and sediment chemistry as well as water-column processes. In total, the set of coordinated international expeditions will involve the deployment of ice-capable research ships from 6 nations (US, Canada, Germany, Sweden, UK, and Russia) across different parts of the Arctic Ocean, and application of state-of-the-art methods to unravel the complex dynamics of trace metals and isotopes that are important as oceanographic and biogeochemical tracers in the sea.
NSF Award Abstract:
In this project, a group of investigators participating in the 2015 U.S. Arctic GEOTRACES expedition will study the areal and depth distribution of Beryllium-7 in the western and central Arctic Ocean. Beryllium-7 (chemical symbol 7Be) is a harmless, naturally-occurring radioisotope (half-life = 53 days) generated worldwide in the upper atmosphere by cosmic ray interaction with certain atmospheric gases. It continuously falls to the Earth's surface, especially during precipitation events, where it can be used as a convenient tracer for a wide variety of environmental processes. It is expected to be very useful in helping to meet the goals of the U.S. Arctic GEOTRACES expedition: namely, to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions. Some trace elements are essential to life, others are known biological toxins, and still others are important because they can be used as tracers of a variety of physical, chemical, and biological processes in the sea. Working alongside a multi-institutional team of ocean trace element experts, the work of the 7Be research group should enable the team to determine the importance of atmospheric deposition of aerosols as a pathway for delivering trace elements from the continents to the deep Arctic Ocean and also to study how the presence or absence of surface sea ice influences the behavior of trace elements in the water column. Like many other participants in the expedition, the 7Be researchers plan to train graduate students in their research and to be involved in public educational outreach efforts in coastal communities in Alaska.
This project will address three priority tasks formulated within the International GEOTRACES Science and Arctic Implementation Plans. First, it will provide realistic estimates of the underlying transport processes influencing distributions of many trace elements of interest (TEIs). Water column measurements of 7Be will be used as a tracer of physical mixing processes, which redistribute biologically active species in the upper water column. Quantitative knowledge of the circulation, mixing, and ventilation of the water masses within which TEIs reside allows an assessment of the time- and space-integrated in situ biogeochemical behavior of these elements. Secondly, 7Be will be used to trace the partitioning of atmospherically deposited elements within the Arctic catchments. The Arctic is unique to other GEOTRACES basins studied to date. For numerous TEIs, measurement not only in the water column, but also in the additional repositories of ice, snow and melt ponds is critical. The inventory of 7Be within these catchments will be used to trace the partitioning of atmospherically deposited elements within the Arctic ocean/ice system. Thirdly, 7Be data will be used to improve methods for quantifying the atmospheric deposition of TEIs. Measurements of 7Be in the surface waters and in the lower atmosphere will be used to develop estimates of the atmospheric input of relevant TEIs. In the Arctic, aerosol deposition is an important pathway for delivering trace element species, but assessment of this input has heretofore proven to be difficult.
GEOTRACES is a SCOR sponsored program; and funding for program infrastructure development is provided by the U.S. National Science Foundation.
GEOTRACES gained momentum following a special symposium, S02: Biogeochemical cycling of trace elements and isotopes in the ocean and applications to constrain contemporary marine processes (GEOSECS II), at a 2003 Goldschmidt meeting convened in Japan. The GEOSECS II acronym referred to the Geochemical Ocean Section Studies To determine full water column distributions of selected trace elements and isotopes, including their concentration, chemical speciation, and physical form, along a sufficient number of sections in each ocean basin to establish the principal relationships between these distributions and with more traditional hydrographic parameters;
* To evaluate the sources, sinks, and internal cycling of these species and thereby characterize more completely the physical, chemical and biological processes regulating their distributions, and the sensitivity of these processes to global change; and
* To understand the processes that control the concentrations of geochemical species used for proxies of the past environment, both in the water column and in the substrates that reflect the water column.
GEOTRACES will be global in scope, consisting of ocean sections complemented by regional process studies. Sections and process studies will combine fieldwork, laboratory experiments and modelling. Beyond realizing the scientific objectives identified above, a natural outcome of this work will be to build a community of marine scientists who understand the processes regulating trace element cycles sufficiently well to exploit this knowledge reliably in future interdisciplinary studies.
Expand "Projects" below for information about and data resulting from individual US GEOTRACES research projects.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |