Raw counts of meiofauna identified in sediment samples from the Kermadec Trench in the Southwest Pacific, 4000 to ~10,000m from the RV/ Thomas G. Thompson during cruise TN309 (HADES-K), May 2014.

Website: https://www.bco-dmo.org/dataset/763758 Data Type: Cruise Results Version: 1 Version Date: 2019-03-18

Project

» Controls on Hadal Megafaunal Community Structure: a Systematic Examination of Pressure, Food Supply, and Topography (HADES)

Contributors	Affiliation	Role
<u>Shank, Timothy M.</u>	Woods Hole Oceanographic Institution (WHOI)	Principal Investigator
Drazen, Jeffrey C.	University of Hawaii at Manoa (SOEST)	Co-Principal Investigator
<u>Yancey, Paul</u>	Whitman College	Co-Principal Investigator
Copley, Nancy	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

This dataset includes raw counts of meiofauna identified in push core samples taken in the Kermadec Trench in the Southwest Pacific, 4000 to ~10,000m from the RV/ Thomas G. Thompson during cruise TN309 (HADES-K), May 2014.

Table of Contents

- <u>Coverage</u>
- Dataset Description
 - Methods & Sampling
 - Data Processing Description
- Data Files
- Parameters
- Instruments
- Deployments
- Project Information
- Funding

Coverage

Spatial Extent: N:-31.9307423 **E**:-177.290253 **S**:-35.905159 **W**:-178.961227 **Temporal Extent**: 2014-05-02 - 2014-05-07

Dataset Description

This dataset includes raw counts of meiofauna identified in push core samples taken in the Kermadec Trench in the Southwest Pacific, 4000 to \sim 10,000m from the RV/ Thomas G. Thompson during cruise TN309, May 2014.

Methods & Sampling

Push cores (6.35 cm diameter) of sediment were collected in situ using the manipulator arm of the Hybrid Remotely Operated Vehicle Nereus on the margin of the Kermadec Trench (6013m) and along the main trench axis (7137 to 9177m) at roughly 1000m increments.

Cores were sectioned at 1cm intervals and sieved for the meiofaunal fraction.

Meiofauna (>300 microns) were enumerated and identified to major taxonomic groups (16 total) based on the published morphological descriptions of the taxonomic groups. The data present the total number of individuals in each of these groups in each core.

Attempts were made to obtain 3 replicate cores at each depth horizon (every 1000 meters from 6000m to 10,000m. For logistical reasons with vehicle performance (and loss at 10,000), all of the replicates were not able to be collected.

Data Processing Description

BCO-DMO Processing Notes:

- added conventional header with dataset name, PI name, version date
- modified parameter names to conform with BCO-DMO naming conventions
- re-formatted date from m/d/yyyy to yyyy-mm-dd

[table of contents | back to top]

Data Files

File

Kermadec_meiofauna.csv(Comma Separated Values (.csv), 2.30 KB) MD5:25ceed0fb192053b5e6fc9f23356914e

Primary data file for dataset ID 763758

[table of contents | back to top]

Parameters

Parameter	Description	Units
USGS_SampleID	USGS sample identifier	unitless
Station	station identifier	unitless
Site	site name	unitless
Location	location code	unitless
Depth	sample depth below sea surface	meters
DateCollected	collection date	unitless
Latitude	latitude; north is postivie	degrees
Longitude	longitude; east is postivie	degrees
Overall_Sample_Progress	status of sorting: complete or not started	unitless
USGS_CoreID	USGS core sample identifier	unitless
Fraction	core fraction??	centimeters
SieveSize	sieve mesh size	microns
NIWA_id	NIWA sample identifier	unitless
ANNELIDA	Number of Annelida identified in sample	individuals
ARTHROPODA	Number of Arthropoda identified in sample	individuals
Crustacea	Number of Crustacea identified in sample	individuals
Amphipoda	Number of Amphipoda identified in sample	individuals
Copepoda	Number of Copepoda identified in sample	individuals
Isopoda	Number of Isopoda identified in sample	individuals
Ostracoda	Number of Ostracoda identified in sample	individuals
Kinorhyncha	Number of Kinorhynch identified in samplea	individuals
Bivalvia	Number of Bivalvia identified in sample	individuals
Gastropoda	Number of Gastropoda identified in sample	individuals
Sipuncula	Number of Sipuncula identified in sample	individuals
Nematoda	Number of Nematoda identified in sample	individuals
Loricifera	Number of Loricifera identified in sample	individuals
Tardigrada	Number of Tardigrada identified in sample	individuals
Gastrotricha	Number of Gastrotricha identified in sample	individuals
Unknown_Individuals	Number of unidentified individuals in sample	individuals

Instruments

Dataset- specific Instrument Name	
Generic Instrument Name	HROV Nereus
Generic Instrument Description	Nereus is an efficient, multi-purpose "hybrid" vehicle that can explore and operate in the crushing pressures of the greatest ocean depths. An unmanned vehicle, Nereus operates in two complementary modes. It can swim freely as an autonomous underwater vehicle (AUV) to survey large areas of the depths, map the seafloor, and give scientists a broad overview. When Nereus locates something interesting, the vehicle's support team can bring the vehicle back on board the ship and transforms it into a remotely operated vehicle (ROV) tethered to the ship via a micro-thin, fiber-optic cable. Through this tether, Nereus can transmit high-quality, real-time video images and receive commands from skilled pilots on the ship to collect samples or conduct experiments with a manipulator arm. Technical specifications: Weight on land: 2,800 kg Payload capacity: 25 kg Maximum speed: 3 knots Batteries: rechargable lithium ion, 15 kilowatt hours in two pressure housings Thrusters: 2 fore and aft, 2 vertical, 1 lateral (ROV mode) 2 fore and aft, 1 vertical (AUV mode) Lights: variable output LED array, strobes Manipulator arm: Kraft TeleRobotics 7-function hydraulic manipulator Sonar: scanning sonar, forward look and profile, 675 KHz Sensors: magnetometer, CTD (to measure conductivity, temperature, and depth) Nereus supports a variety of science operations: Push coring, measuring heat flow, geotechnical and geochemical sensing, rock sampling and drilling, biological sampling, water sampling, high resolution acoustic bathymetry, and optical still and video imagery. More information is available from the operator site at URL.

Dataset- specific Instrument Name	Leica MZ APO stereo microscopes
Generic Instrument Name	Microscope - Optical
Generic Instrument Description	Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a "light microscope".

Dataset- specific Instrument Name	
Generic Instrument Name	Push Corer
Dataset- specific Description	Push cores were borrowed from the National Deep Submergence Facility to be able to standardize results. The push cores were 6.35cm diameter).
Generic Instrument Description	Capable of being performed in numerous environments, push coring is just as it sounds. Push coring is simply pushing the core barrel (often an aluminum or polycarbonate tube) into the sediment by hand. A push core is useful in that it causes very little disturbance to the more delicate upper layers of a sub-aqueous sediment. Description obtained from: http://web.whoi.edu/coastal-group/about/how-we-work/field-methods/coring/

TN309		
Website	https://www.bco-dmo.org/deployment/536488	
Platform	R/V Thomas G. Thompson	
Start Date	2014-04-10	
End Date	2014-05-20	
Description	Original data are available from the NSF R2R data catalog	

Project Information

Controls on Hadal Megafaunal Community Structure: a Systematic Examination of Pressure, Food Supply, and Topography (HADES)

Website: http://www.whoi.edu/hades/

Coverage: Kermadec Trench adjacent to New Zealand: approximately 37 12.75 S and 178 51.43 E to 31 51.29 S and 176 49.07 W

Extracted from the NSF award abstract:

Severe technical challenges associated with the extremes of hydrostatic pressure have prevented major advances in hadal ecological studies, and relegated hadal systems to among the most poorly investigated habitats on Earth. Through this project, Hadal Ecosystems Studies (HADES) program, PIs will determine the composition and distribution of hadal species, the role of hadal pressures (piezolyte concentrations, enzyme function under pressure), food supply (distribution of POC with the abundance and biomass of trench organisms, and metabolic rates/energetic demand), and depth/topography (genetic divergence and spatial connectivity of populations) have on impacting deep-ocean community structure. This project will examine these factors using the world's first full-ocean depth hybrid remotely operated vehicle (HROV) in conjunction with the only full-ocean depth imaging lander (Hadal-Lander). This project will provide the first seafloor data and samples in one of the world's best, yet little known trenches- the Kermadec Trench (SW Pacific Ocean). Megafaunal community structure and the relationship between POC and benthic bacterial biomass will be examined as a function of depth and location by systematic high-definition imaging and sediment/faunal sampling transects from abyssal to full trench depths both along and perpendicular to the trench axis. Population genetic approaches will provide levels of genetic divergence and evolutionarily independent lineages to assess the role of depth and topography in trenches and their adjacent abyssal plain in promoting the formation of species. Physiological constraints will be investigated by examining in-situ respiration of selected fauna and tissue concentrations of such protein stabilizers as trimethylamine oxide (TMAO), and the structural adaptations of macromolecules.

Image of NEREUS Deployment Sites. [click on the image to view a larger version]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	<u>OCE-1131620</u>

[table of contents | back to top]