Dataset: percent_activity
Data Citation:
Santschi, P., Quigg, A., Schwehr, K., Xu, C. (2019) Percent activity of organic fractions from diatoms that bind with radionuclide. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2019-04-11 [if applicable, indicate subset used]. doi:10.1575/1912/bco-dmo.764885.1 [access date]
Terms of Use
This dataset is licensed under Creative Commons Attribution 4.0.
If you wish to use this dataset, it is highly recommended that you contact the original principal investigators (PI). Should the relevant PI be unavailable, please contact BCO-DMO (info@bco-dmo.org) for additional guidance. For general guidance please see the BCO-DMO Terms of Use document.
DOI:10.1575/1912/bco-dmo.764885.1
View, Subset and Download Data
BCO-DMO is preparing to move to a new data access system that provides more functionality and features. This system, called ERDDAP, is free and open source with a strong and growing user community. Currently, we are providing the following data access and download capabilities for datasets as we work through our legacy data holdings. These capabilities will soon be available for all data at BCO-DMO:Data Access
- - view the data in an HTML table
- - filter the data before viewing or downloading in a variety of formats
- - download the data with comma-separated values (Excel-ready)
- - download the data with tab-separated values (Excel-ready)
- - download the data as GeoJSON. Try it out at geojson.io
- - download the data as a valid MATLAB file
- - download the data in NetCDF format
- - download the data in Ocean Data View format
Give Us Feedback
Do you have thoughts, questions or constructive feedback about data access at BCO-DMO? Let us know: feedback [at] bco-dmo [dot] org
Project:
Biopolymers as carrier phases for selected natural radionuclides (of Th, Pa, Pb, Po, Be) in diatoms and coccolithophores
(Biopolymers for radionuclides)
Principal Investigator:
Peter Santschi (Texas A&M, Galveston, TAMUG)
Co-Principal Investigator:
Antonietta Quigg (Texas A&M, Galveston, TAMUG)
Kathleen Schwehr (Texas A&M, Galveston, TAMUG)
Chen Xu (Texas A&M, Galveston, TAMUG)
BCO-DMO Data Manager:
Mathew Biddle (Woods Hole Oceanographic Institution, WHOI BCO-DMO)
Version:
1
Version Date:
2019-04-11
Restricted:
No
Validated:
Yes
Current State:
Final no updates expected
Percent activity of organic fractions from diatoms that bind with radionuclide
Abstract:
Percent amount of organic fractions from diatoms that bind with radionuclide. In order to investigate the importance of biogenic silica associated biopolymers on the scavenging of radionuclides, the diatom Phaeodactylum tricornutum was incubated together with the radionuclides 234Th, 233Pa, 210Pb, and 7Be during their growth phase. Normalized affinity coefficients were determined for the radionuclides bound with different organic compound classes (i.e., proteins, total carbohydrates, uronic acids) in extracellular (nonattached and attached exopolymeric substances), intracellular (ethylene diamine tetraacetic acid and sodium dodecyl sulfate extractable), and frustule embedded biopolymeric fractions (BF). Results indicated that radionuclides were mostly concentrated in frustule BF. Among three measured organic components, Uronic acids showed the strongest affinities to all tested radionuclides. Confirmed by spectrophotometry and two-dimensional heteronuclear single quantum coherence-nuclear magnetic resonance analyses, the frustule BF were mainly composed of carboxyl-rich, aliphatic-phosphoproteins, which were likely responsible for the strong binding of many of the radionuclides. Results from this study provide evidence for selective absorption of radionuclides with different kinds of diatom-associated biopolymers acting in concert rather than as a single compound. This clearly indicates the importance of these diatom-related biopolymers, especially frustule biopolymers, in the scavenging and fractionation of radionuclides used as particle tracers in the ocean.