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Abstract
We utilize an ensemble of artificial neural networks (EANNs) to interpolate our global ocean nitrate d15N
database, producing complete 3D maps of the data. By utilizing an artificial neural network (ANN), a machine
learning approach that effectively identifies nonlinear relationships between a target variable (the isotopic
dataset) and a set of input features (other available ocean datasets), we can fill holes in our data sampling
coverage of nitrate d15N.
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Methods & Sampling

For complete methodology, refer to Rafter et al. (2019). In summary:

Data Compilation: Nitrate d15N observations were compiled from studies dating from 1975 to 2018. This
global ocean nitrate d15N database was interpolated using an ensemble of artificial neural networks (EANNs).
For the compiled observed global ocean nitrate d15N data, see the related dataset: https://www.bco-
dmo.org/dataset/768627

Building the neural network model: We utilize an ensemble of artificial neural networks (EANNs) to
interpolate our global ocean nitrate d15N database, producing complete 3D maps of the data. By utilizing an
artificial neural network (ANN), a machine learning approach that effectively identifies nonlinear relationships
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between a target variable (the isotopic dataset) and a set of input features (other available ocean datasets), we
can fill holes in our data sampling coverage of nitrate d15N.

Binning target variables (Step 1): We binned the nitrate d15N observations to the World Ocean Atlas 2009
(WOA09) grid with a 1-degree spatial resolution and 33 vertical depth layers (0-5500 m). When binning
vertically, we use the depth layer whose value is closest to the observation's sampling depth (e.g. the first
depth layer has a value of 0 m, the second of 10 m, and the third of 20 m, so all nitrate isotopic data sampled
between 0-5 m fall in the 0 m bin; between 5-15 m they fall in the 10 m bin, etc.). An observation with a
sampling depth that lies right at the midpoint between depth layers is binned to the shallower layer. If more
than one raw data point falls in a grid cell we take the average of all those points as the value for that grid cell.
Certain whole ship tracks of nitrate d15N data were withheld from binning to be used as an independent
validation set.

Obtaining input features (Step 2): Our input dataset contains a set of climatological values for physical
and biogeochemical ocean parameters that form a non-linear relationship with the target data. We have six
input features including objectively analyzed annual-mean fields for temperature, salinity, nitrate, oxygen, and
phosphate taken from the WOA09 (https://www.nodc.noaa.gov/OC5/WOA09/woa09data.html) at 1-degree
resolution. Additionally, daily chlorophyll data from Modis Aqua for the period Jan-1-2003 through Dec-31-2012
is averaged and binned to the WOA09 grid (as described in Step 1) to produce an annual climatological field of
chlorophyll values, which we then log transform to reduce their dynamic range.

The choice of these specific input features was dictated by our desire to achieve the best possible R2 value on
our internal validation sets (Step 4). Additional inputs besides those we included, such as latitude, longitude,
silicate, euphotic depth, or sampling depth either did not improve the R2 value on the validation dataset or
degraded it, indicating that they are not essential parameters for characterizing this system globally. By opting
to use the set of input features that yielded the best results for the global oceans, we potentially overlooked
combinations of inputs that perform better at regional scales. However, given the scarcity of d15N data in
some regions, it is not possible to ascribe the impact of a specific combination of input features versus the
impact of available d15N data, which may not be representative of the region's climatological state, to the
relative model performance in these regions.

Training the ANN (Step 3): The architecture of our ANN consists of a single hidden layer, containing 25
nodes, that connects the biological and physical input features (discussed in Step 2) to the target nitrate
isotopic variable (as discussed in Step 1). The role of the hidden layer is to transform input features into new
features contained in the nodes. These are given to the output layer to estimate the target variable, introducing
nonlinearities via an activation function. The number of nodes in this hidden layer, as well as the number of
input features, determines the number of adjustable weights (the free parameters) in the network. For
complete information, refer to Rafter et al. (2019).

Validating the ANN (Step 4):To ensure good generalization of the trained ANN, we randomly withhold 10%
of the d15N data to be used as an internal validation set for each network. This is data that the network never
sees, meaning it does not factor into the cost function, so it works as a test of the ANN's ability to generalize.
This internal validation set acts as a gatekeeper to prevent poor models from being accepted into the ensemble
of trained networks (see Step 5). A second, independent or 'external' validation set, composed of complete
ship transects from the high and low latitude ocean were omitted from binning in Step 1 and used to establish
the performance of the entire ensemble. Our rationale for using complete ship transects is the following. If we
randomly chose 10% of observations to perform an external validation, this dataset will be from the same
cruises as the wider data. In other words, despite being randomly selected, the validating observational dataset
will be highly correlated geographically. Contrast this with validating the EANN results with observations from
whole research cruises in unique geographic regions—areas where the model has not "learned" anything about
nitrate. We therefore argue that these observations from whole ship tracks therefore provide a more difficult
test of the model.

Forming the Ensemble (Step 5): The ensemble is formed by repeating Steps 3 to 4 (using a different
random 10% validation set) until we obtain 25 trained networks for the nitrate d15N dataset. A network is
admitted into the ensemble if it yields an R² value greater than 0.81 on the validation dataset. For complete
information, refer to Rafter et al. (2019).

Data Processing Description

See supplemental MatLab files:
d15NO3_ANN.m -This script creates an ensemble of Artificial Neural Networks (ANNs) to interpolate delta15N

https://www.nodc.noaa.gov/OC5/WOA09/woa09data.html
https://datadocs.bco-dmo.org/docs/Fe_Cycle_Models_and_Observations/data_docs/d15NO3_ANN.m


(Comma Separated Values (.csv), 30.76 MB)
MD5:f939fe2154877eaf069593da1afdd7a1

(MATLAB Programming Script (.m), 2.93 KB)
MD5:81acc3254a181d73c836834d668d777f

(MATLAB Programming Script (.m), 42.53 MB)
MD5:6c315ee3007cd4c38e9d8e0ffa61ad7a

(MATLAB Programming Script (.m), 16.76 MB)
MD5:76305301995ee71c0f97d7ab9bbe5eee

of nitrate observations globally using ocean datasets from the World Ocean Atlas 2009.
PR19_d15NO3_ANN_anclim_inputs - input data for d15NO3_ANN.m
PR19_d15NO3_ANN_anclim_outputs - output of d15NO3_ANN.m 
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Data Files

File

d15N_MODEL.csv

Primary data file for dataset ID 768655
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Supplemental Files

File

d15NO3_ANN.m

This script creates an ensemble of Artificial Neural Networks (ANNs) to interpolate delta15N of nitrate observations globally using 
ocean datasets from the World Ocean Atlas 2009.

PR19_d15NO3_ANN_anclim_inputs.mat

Input data to script d15NO3_ANN.m

PR19_d15NO3_ANN_anclim_outputs.mat

Output of script d15NO3_ANN.m
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Parameters
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Parameter Description Units
latitude Latitude in degrees north degrees North
longitude Longitude in degrees East degrees East
depth Depth meters (m)
d15N modeled nitrate d15N per mil
d15N_stdev standard deviation per mil
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Collaborative research: Combining models and observations to constrain the marine iron cycle
(Fe Cycle Models and Observations)

NSF Award Abstract:
Tiny marine organisms called phytoplankton play a critical role in Earth's climate, by absorbing carbon dioxide
from the atmosphere. In order to grow, these phytoplankton require nutrients that are dissolved in seawater.
One of the rarest and most important of these nutrients is iron. Even though it is a critical life-sustaining
nutrient, oceanographers still do not know much about how iron gets into the ocean, or how it is removed
from seawater. In the past few years, scientists have made many thousands of measurements of the amount
of dissolved iron in seawater, in environments ranging from the deep sea, to the Arctic, to the tropical oceans.
They found that the amount of iron in seawater varies dramatically from place to place. Can this data tell us
about how iron gets into the ocean, and how it is ultimately removed? Yes. In this project, scientists working on
making measurements of iron in seawater will come together with scientists who are working on computer
models of iron inputs and removal in the ocean. The goal is to work together to create a program that allows
our computer models to "learn" from the data, much like an Artificial Intelligence program. This program will
develop a "best estimate" of where and how much iron is coming into the ocean, how long it stays in the
ocean, and ultimately how it gets removed. This will lead to a better understanding of how climate change will
impact the delivery of iron to the ocean, and how phytoplankton will respond to climate change. With better
climate models, society can make more informed decisions about how to respond to climate change. The study
will also benefit a future generation of scientists, by training graduate students in a unique collaboration
between scientists making seawater measurements, and those using computer models to interpret those
measurements. Finally, the project aims to increase the participation of minority and low-income students in
STEM (Science, Technology, Engineering, and Mathematics) research, through targeted outreach programs.

Iron (Fe) is an important micronutrient for marine phytoplankton that limits primary productivity over much of
the ocean; however, the major fluxes in the marine Fe cycle remain poorly quantified. Ocean models that
attempt to synthesize our understanding of Fe biogeochemistry predict widely different Fe inputs to the ocean,
and are often unable to capture first-order features of the Fe distribution. The proposed work aims to resolve
these problems using data assimilation (inverse) methods to "teach" the widely used Biogeochemical Elemental
Cycling (BEC) model how to better represent Fe sources, sinks, and cycling processes. This will be achieved by
implementing BEC in the efficient Ocean Circulation Inverse Model and expanding it to simulate the cycling of
additional tracers that constrain unique aspects of the Fe cycle, including aluminum, thorium, helium and Fe
isotopes. In this framework, the inverse model can rapidly explore alternative representations of Fe-cycling
processes, guided by new high-quality observations made possible in large part by the GEOTRACES program.
The work will be the most concerted effort to date to synthesize these rich datasets into a realistic and
mechanistic model of the marine Fe cycle. In addition, it will lead to a stronger consensus on the magnitude of
fluxes in the marine Fe budget, and their relative importance in controlling Fe limitation of marine ecosystems,
which are areas of active debate. It will guide future observational efforts, by identifying factors that are still
poorly constrained, or regions of the ocean where new data will dramatically reduce remaining uncertainties
and allow new robust predictions of Fe cycling under future climate change scenarios to be made, ultimately
improving climate change predictions. A broader impact of this work on the scientific community will be the
development of a fast, portable, and flexible global model of trace element cycling, designed to allow non-
modelers to test hypotheses and visualize the effects of different processes on trace metal distributions. The
research will also support the training of graduate students, and outreach to low-income and minority students
in local school districts.
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