Contributors | Affiliation | Role |
---|---|---|
Aronson, Richard B. | Florida Institute of Technology (FIT) | Principal Investigator |
Toth, Lauren T. | United States Geological Survey (USGS) | Co-Principal Investigator |
Copley, Nancy | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Percent cover of healthy and bleached coral in Pacific Panama using the transect method in 2019.
Coral health was monitored using a transect technique by laying 25-meter transects along a depth contour in the reef at 3 sites within the Gulf of Chiriqui and 3 sites within the Gulf of Panama. Benthic composition below the tape was recorded every 25cm for the entire transect length. The process was repeated 5 more times for a total of 6 transects for each site. Any coral present was classified and the health was scored using a 1-3 scale rating, with 1 indicating a fully healthy colony, 3 indicating a bleached colony, and 2 indicating a pale colony that fell in-between 1 and 3.
BCO-DMO Processing Notes:
File |
---|
bleaching_2019.csv (Comma Separated Values (.csv), 3.28 KB) MD5:22d6853221a31b88b36379005fb18e0f Primary data file for dataset ID 776377 |
Parameter | Description | Units |
Gulf | P (Panama) and C (Chiriqui) Gulf | unitless |
Site | experimental site | unitless |
Latitude | latitude in decimal degrees north | decimal degrees |
Longitude | longitude in decimal degrees east | decimal degrees |
Time | season and year that the transect was taken | season year |
Transect | transect number | unitless |
Healthy_P_damicornis | frequency of healthy Pocillopora damicornis identified in the transect; rated as 1 indicating no bleaching | unitless |
Pale_P_damicornis | frequency of pale Pocillopora damicornis identified in the transect; rated as 2 indicating lower health | unitless |
Bleached_P_damicornis | frequency of bleached Pocillopora damicornis identified in the transect; rated as 3 indicating bleached | unitless |
Healthy_P_verricosa | frequency of healthy Pocillopora verricosa identified in the transect; rated as 1 indicating no bleaching | unitless |
Pale_P_verricose | frequency of pale Pocillopora verricosa identified in the transect; rated as 2 indicating lower health | unitless |
Bleached_P_verricosa | frequency of bleached Pocillopora verricosa identified in the transect; rated as 3 indicating bleached | unitless |
Healthy_Psammocora_stellata | frequency of healthy colonies of the species identified in the transect; rated as 1 indicating no bleaching | unitless |
Pale_P_stellata | frequency of pale colonies of the species identified in the transect; rated as 2 indicating lower health | unitless |
Bleached_P_stellata | frequency of bleached colonies of the species identified in the transect; rated as 3 indicating bleached | unitless |
COTS_damage | frequency of harm identified to the coral structure caused by crown of thorns | unitless |
Standing_dead_coral_no_turf | frequency of identified dead coral colonies that did not have turf starfish (COTS) | unitless |
Standing_dead_coral_with_turf | frequency of identified dead coral colonies that had turf algae colonizing them | unitless |
Unconsolidated_rubble_with_turf | frequency of rubble on the ground that had turf algae growing on it | unitless |
Unconsolidated_rubble_with_CCA | frequency of rubble on the ground that had crustose coralline algae (CCA) growing on it | unitless |
Fleshy_algae | frequency of fleshy algae observed in the transect | unitless |
CCA | frequency of crustose coralline algae (CCA) observed in the transect | unitless |
Sand | frequency of sand observed in the transect | unitless |
Healthy_Porites_lobata | the frequency of healthy colonies of the identified species in the transect; rated as 1 indicating good health | unitless |
Total | the total number of observations in the transect | unitless |
Coral reefs are under threat around the world, and climate change is the main reason they are declining. Knowing how local conditions on a reef exaggerate or mask the impacts of climate change make it possible to predict which reefs are most likely to survive longer and, therefore, which reefs deserve the greatest effort and funding for conservation. Reefs off the Pacific coast of Panama are vulnerable to the impacts of global climate change but are also strongly influenced by small-scale currents and other local conditions. The goal of this study is to see how those local differences affect coral growth and the ability of the corals to build reefs. Climate change appears poised to shut down reef growth off Pacific Panama within the next century. Considering that sea-level rise is accelerating at the same time, if coral reefs shut down they will not be able to protect populated shorelines from storm damage and erosion. In addition to its scientific insights, this project will provide undergraduate and graduate training, provide research training for underrepresented groups, advance women in scientific careers, and contribute important information for management and policy. The results will be incorporated into innovative curricular materials for K through 12 classes in Title-I schools in Florida aligned with Next Generation (Common Core) standards, and standards for Climate and Ocean Literacy. An annual film festival will be organized for K through 12 students to explore themes in marine science through videography.
Global climate change is now the leading cause of coral-reef degradation, but the extent to which mesoscale oceanography overprints climatic forcing is poorly understood. Previous studies in Pacific Panama showed that reef ecosystems collapsed from 4100 to 1600 years ago. The 2500-yr hiatus in reef-building occurred at locations throughout the Pacific, and the primary cause was increased variability of the El Nino-Southern Oscillation. This study will determine the influence of contemporary variability in mesoscale oceanography in the eastern tropical Pacific (ETP) on variability in the condition of local coral populations. Insights from the living populations will be combined with paleoecological and geochemical studies of reef frameworks to infer past conditions that were inimical or beneficial to coral growth and reef accretion. Three primary hypotheses will be tested in Pacific Panama:
H1. Mesoscale oceanography is manifested in gradients of reef condition, coral growth, and coral physiological condition. Physiographic protection from upwelling currents and thermocline shoaling confers positive effects on coral growth rate and physiology.
H2. The impacts of mesoscale oceanographic regimes on the growth and condition of reef-corals were felt at least as far back as the mid- to late Holocene.
H3. Physiographic protection from upwelling currents and thermocline shoaling conferred positive effects on vertical reef accretion in the past and shortened the late-Holocene hiatus.
Specific research approaches to test these hypotheses will include collecting high-resolution, oceanographic time series to characterize contemporary environments along gradients of physical conditions; collecting ecological and geochemical data on the condition of living coral populations; and extracting cores from the reef frameworks and analyzing the coral assemblages taxonomically, taphonomically, and geochemically to assess patterns of biotic and paleoenvironmental variability. Strong spatial and temporal variability in the physical drivers of reef development make the ETP an excellent model system in which to examine the response of coral reefs to climate change over a range of physical regimes. This research will provide a unique opportunity to tease apart the controls on reef development across multiple spatial and temporal scales. The climatology underlying the late-Holocene hiatus was similar to probable scenarios for the next century, implying that climate change could be driving reef ecosystems of the ETP (and elsewhere) toward another collapse. Understanding how the hiatus unfolded along oceanographic gradients will increase our power to predict the future responses of reefs to a rapidly changing climate.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |