Relative crab mortality (binomial) data from a tethering experiment in summer 2017 in Back Sound, North Carolina Website: https://www.bco-dmo.org/dataset/780043 Data Type: Other Field Results Version: 2 **Version Date**: 2019-02-11 #### Project » <u>Collaborative Research: Habitat fragmentation effects on fish diversity at landscape scales: experimental tests of multiple mechanisms</u> (Habitat Fragmentation) | Contributors | Affiliation | Role | |-----------------|---|------------------------| | Fodrie, F. Joel | University of North Carolina at Chapel Hill (UNC-Chapel Hill-IMS) | Principal Investigator | | Yarnall, Amy | University of North Carolina at Chapel Hill (UNC-Chapel Hill-IMS) | Contact | | York, Amber D. | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager | #### Abstract Relative crab mortality (binomial) data from a tethering experiment in summer 2017 in Back Sound, North Carolina. ### **Table of Contents** - Coverage - Dataset Description - Methods & Sampling - Data Processing Description - Data Files - Supplemental Files - Related Publications - <u>Parameters</u> - Instruments - <u>Project Information</u> - Funding #### Coverage Spatial Extent: N:34.703251 E:-76.526267 S:34.651056 W:-76.587826 **Temporal Extent**: 2017-06-09 - 2017-07-13 # **Dataset Description** Relative crab mortality (binomial) data from a tethering experiment in summer 2017 in Back Sound, North Carolina. #### Methods & Sampling For Table and Figure references below, see the document "PredationAssay_statistical_analysis.pdf" in the Supplemental Files section. Study Site Selection We conducted our study across eight discrete seagrass meadows (hereafter referred to as landscapes) located in Back Sound, North Carolina (NC), USA (3442' N to 3439' N, 7637' W to 7631' W) (Fig. S1). All of our sampled landscapes were composed of a mixture of Back Sound's dominant seagrasses: eelgrass and shoal grass, Halodule wrightii (Ascherson 1868) (Yeager et al. 2016). Landscapes were chosen based upon available aerial imagery in Google Earth Pro as of February 19, 2017, and ground-truthed for changes in seasonal seagrass growth/senescence using summer, 2017, drone photography and ImageJ 1.x (Schneider et al. 2012). No discernable differences in landscape fragmentation states (e.g. total area, number of patches) were found between the two aerial imagery sources. All landscapes were relatively shallow (1-1.5 m depth at high tide), reasonably isolated from other seagrass beds (distance to nearest seagrass meadow = 112 17 m [mean standard error]) and were appropriately sized to encompass short-term (e.g., daily, monthly) movements of common seagrass-associated fauna in this system (Yeager et al. 2016). We identified similarly sized landscapes (25882 6592 m2) available in Back Sound by defining the minimum convex polygon surrounding the seagrass meadow, regardless of the total seagrass cover within the polygon. Among eight candidate landscapes of similar size, we defined four continuous landscapes and four fragmented landscapes based on the number of patches, the perimeter-to-area ratio, and the largest patch's percent cover of the total seagrass area (Table 1). Seagrass fragmentation is often naturally coupled with habitat loss (Wilcove et al. 1986), resulting in the mean seagrass area of our fragmented landscapes being nearly half that of our continuous landscapes (Table 1). Thus, our experiment was designed to examine the effects of fragmentation (i.e., the breaking apart of habitat concomitant with habitat loss) rather than fragmentation per se (i.e., the breaking apart of habitat without habitat loss; sensu Fahrig 2003). #### Predation Assays Relative predation (i.e., mortality) was measured using tethered juvenile blue crabs (Callinectes sapidus Rathbun) of carapace widths 10-40 mm. Tethering is commonly used to measure relative predation on juvenile blue crabs (Wilson et al. 1990; Hovel and Lipcius 2001). We note that tethering cannot be used to determine absolute predation rates, as tethered prey have restricted flee potential, generally raising the incidence of predation (Peterson and Black 1994). Still, when interpreted conservatively, tethering data can elucidate differences the relative directionality of environmental factors affecting prey survival (i.e., positive or negative effects). Juvenile blue crabs were chosen for tethering due to their economic and ecological importance to coastal regions (McCann et al. 2017) and because they have served as a model prey organism in several previous studies of related design (e.g., Hovel and Lipcius 2001, 2002; Mahoney et al. 2018). Crab predation assays were run from June to July as this was the period during which we could obtain sufficient numbers of appropriately sized crabs for our experiment. All juvenile blue crabs were captured in seine nets from Oyster Creek, NC (3449'19"N, 7627'07"W). Crabs were glued (active ingredient cyanoacrylate) to 30-cm segments of 12-lbs test monofilament. We chose to use 30-cm segments of monofilament for tethers to allow crabs to exhibit natural burrowing behavior (Hovel and Fonseca 2005), mitigating some tethering artifacts of prey visibility (Peterson and Black 1994). Tethered crabs were attached to 60-cm long, 0.5-cm diameter, fiberglass stakes with attached floats for easy relocation. Once tethered, crabs were held overnight as a check for attachment integrity, and then deployed across our landscapes on the following day. Twenty tethered crabs were deployed (stakes pushed completely into the sediment) in each continuous and fragmented landscape per predation assay date. Within each landscape, 10 tethered crabs were haphazardly placed within seagrass edges, defined as 30 cm (a tether length) from the seagrass-mudflat interface. The other 10 tethered crabs were haphazardly placed in seagrass interiors, defined as ≥1 m from the seagrass-mudflat interface. Only patches with a radius of 1 m or larger were used for tethers classified as 'interior'. However, patches with a radius of <1 m were used for a portion of our 'edge' tethers. All tethers were placed at least 1 m apart. We returned to landscapes at 1 h and 24 h to check crab status (live, eaten). All missing crabs were presumed eaten, as no crabs escaped tethers during the 24-h holding period. After 24 h, any remaining live crabs were removed from tethers and released. Crab tethering cycles were repeated four times in 2017 (June 9, June 14, July 5, and July 13). On July 13, only half of the continuous and fragmented landscapes were included in tethering assays due to a lack of crab availability. A total of 550 tethered juvenile blue crabs were deployed during our trials (see Table S1 for full sampling schedule and assay sample sizes). Point measurements of water temperature (C) were taken in each landscape at the location and time of all tethering assays and faunal sampling using hand-held thermometers (Table S1). We chose temperature as our seasonality proxy (Fig. S2) because several other seasonally affected factors including faunal densities correlate with water temperature variability. Additionally, the measurement of temperature is easy, cheap, reliable, and comparable to previous studies. Tether materials: EcoStakes – tomato plant stakes Locktite glue 12-lbs test monofilament fishing line Pool noodles – cut into rounds for tether relocation floats Hand-held digital thermometer- LYNCH Waterproof thermometer 39240 Hand-held refractometer-VEE GEE STX-3 Salinity 0-100%o Hand-held Garmin GPSmap 78 Electronic calipers – INOX waterproof IP54 # **Data Processing Description** Data processing: All data were entered electronically into an Excel spreadsheet. BCO-DMO Data Manager Processing Notes: - * exported submitted excel file to csv format - * added a conventional header with dataset name, PI name, version date - * modified parameter names to conform with BCO-DMO naming conventions - * date format converted to ISO 8601 standard format yyyy-mm-dd - * cells with just a period as a value replaced will no-data values. No-data values in this dataset are displayed as the missing data identifier "nd" for "no data" in the BCO-DMO system. - * added ISO DateTime ISO In from local date and time in columns. - * commas in comments replaced with semicolons to support csv output - * data version 2 created. No change to data values, version 2 was created to fix an error in serving the "Notes" column which contains commas. The archived data version 1 of this dataset does not contain the full data due to this error. ## [table of contents | back to top] #### **Data Files** #### File PredationAssay_Data.csv(Comma Separated Values (.csv), 71.69 KB) MD5:d47ba9b4c99490d1b7161f0e8d5fc103 Primary data file for dataset ID 780043 [table of contents | back to top] ## **Supplemental Files** #### File PredationAssay_statistical_analysis.pdf(Portable Document Format (.pdf), 182.45 KB) MD5:01e081ad95bbecf3b31c77106d52ff00 PredationAssay statistical analysis, tables, and figures [table of contents | back to top] # **Related Publications** Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. doi:10.1146/annurev.ecolsys.34.011802.132419 Methods Hovel, K. A., & Lipcius, R. N. (2001). HABITAT FRAGMENTATION IN A SEAGRASS LANDSCAPE: PATCH SIZE AND COMPLEXITY CONTROL BLUE CRAB SURVIVAL. Ecology, 82(7), 1814–1829. doi:10.1890/0012-9658(2001)082[1814:hfiasl]2.0.co;2 https://doi.org/10.1890/0012-9658(2001)082[1814:HFIASL]2.0.CO;2 Methods Hovel, K. A., & Lipcius, R. N. (2002). Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. Journal of Experimental Marine Biology and Ecology, 271(1), 75–98. doi:10.1016/s0022-0981(02)00043-6 https://doi.org/10.1016/S0022-0981(02)00043-6 Methods Hovel, K., & Fonseca, M. (2005). Influence of seagrass landscape structure on juvenile blue crab habitatsurvival function. Marine Ecology Progress Series, 300, 179–191. doi: 10.3354/meps300179 Methods Mahoney, R. D., Kenworthy, M. D., Geyer, J. K., Hovel, K. A., & Joel Fodrie, F. (2018). Distribution and relative predation risk of nekton reveal complex edge effects within temperate seagrass habitat. Journal of Experimental Marine Biology and Ecology, 503, 52–59. doi:10.1016/j.jembe.2018.02.004 Methods McCann, M. J., Able, K. W., Christian, R. R., Fodrie, F. J., Jensen, O. P., Johnson, J. J., ... Ziegler, S. L. (2017). Key taxa in food web responses to stressors: the Deepwater Horizonoil spill. Frontiers in Ecology and the Environment, 15(3), 142–149. doi: 10.1002/fee.1474 Methods Peterson, C., & Black, R. (1994). An experimentalist's challenge: when artifacts of intervention interact with treatments. Marine Ecology Progress Series, 111, 289–297. doi:10.3354/meps111289 Methods R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org Software Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 Software Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation Biology, Sinauer, Sunderland, MA pp 237–256. https://www.fws.gov/southwest/es/documents/r2es/litcited/lpc_2012/wilcove_et_al_1986.pdf Methods Wilson KA, Able KW, Heck KL Jr (1990) Habitat use by juvenile blue crabs: a comparison among habitats in southern New Jersey. Bull Mar Sci 46:105–114 https://www.ingentaconnect.com/contentone/umrsmas/bullmar/1990/00000046/00000001/art000010# Methods Yeager, L. A., Keller, D. A., Burns, T. R., Pool, A. S., & Fodrie, F. J. (2016). Threshold effects of habitat fragmentation on fish diversity at landscapes scales. Ecology, 97(8), 2157–2166. doi:10.1002/ecy.1449 Methods [table of contents | back to top] ## **Parameters** | Parameter | Description | Units | |---------------------|--|--------------------------------------| | Date | Date tethered crab deployed in ISO 8601 format yyyy-mm-dd | unitless | | SiteID | Name of seagrass bed in which tether was deployed | unitless | | C_F | Fragmentation state of seagrass bed: $C = Continuous$, $F = Fragmented$ | unitless | | lat | Latitude | decimal
degrees | | lon | Longitude | decimal
degrees | | AirTemp_C | Air temperature at time and place of tether deployment | degrees
Celsius (C) | | WaterTemp_C | Water temperature at time and place of tether deployment | degrees
Celsius (C) | | Salinity_PSU | Salinity of water at time and place of tether deployment | Practical
Salinity Units
(PSU) | | Depth_m | Depth of water at time and place of tether deployment | meters (m) | | HighTide | Time of high tide at place of tether deployment | unitless | | LowTide | Time of low tide at place of tether deployment | unitless | | TimeInFromHigh | At time of tether deployment, time passed since high tide | unitless | | Tide | At time of tether deployment, ebb or flow tide | unitless | | Bobber_Num | Individual ID number of tether (numbers may be repeated across dates) | per
individual | | CW_mm | Carapace width (measured from spine to spine of crab) | millimeters
(mm) | | Claw_Num | Number of claws the crab had intact at time of tethering | per
individual
claw | | E_I | Position of tether deployment with seagrass bed; $E = edge (\le 0.3 \text{ m})$ from seagrass/mudflat interface), $I = Interior (>1 \text{ m})$ from seagrass/mudflat interface) | unitless | | TimeIn | Local time of tether deployment [EDT][GMT-4h] in format h:mm | unitless | | TimeOut | Local time of tether removal [EDT][GMT-4h] in format h:mm | unitless | | hr1 | Status of crab on tether at 1 hour from deployment time; $1 = \frac{1}{1}$ live/present, $0 = \frac{1}{1}$ | unitless | | hr24 | Status of crab on tether at 24 hours from deployment time; $1 = live/present$, $0 = dead/missing$ | unitless | | ISO_DateTime_UTC_In | Date Time (UTC) in ISO 8601 format yyyy-mm-ddTHH:MMZ | unitless | | Notes | Notes relevant to individual tether | unitless | [table of contents | back to top] # Instruments | Dataset-
specific
Instrument
Name | INOX waterproof IP54 | |--|---| | Generic
Instrument
Name | calipers | | Dataset-
specific
Description | Electronic calipers – INOX waterproof IP54 | | Generic
Instrument
Description | A caliper (or "pair of calipers") is a device used to measure the distance between two opposite sides of an object. Many types of calipers permit reading out a measurement on a ruled scale, a dial, or a digital display. | | Dataset-specific
Instrument Name | Hand-held Garmin GPSmap 78 | |-------------------------------------|--| | Generic Instrument
Name | GPS receiver | | | Acquires satellite signals and tracks your location. This term has been deprecated. Use instead: https://www.bco-dmo.org/instrument/560 | | Dataset-
specific
Instrument
Name | VEE GEE STX-3 | |--|---| | Generic
Instrument
Name | Refractometer | | Dataset-
specific
Description | Hand-held refractometer-VEE GEE STX-3 Salinity 0-100%o | | | A refractometer is a laboratory or field device for the measurement of an index of refraction (refractometry). The index of refraction is calculated from Snell's law and can be calculated from the composition of the material using the Gladstone-Dale relation. In optics the refractive index (or index of refraction) n of a substance (optical medium) is a dimensionless number that describes how light, or any other radiation, propagates through that medium. | | Dataset-specific Instrument
Name | LYNCH Waterproof thermometer 39240 | |-------------------------------------|---| | Generic Instrument Name | Thermometer | | Dataset-specific Description | Hand-held digital thermometer- LYNCH Waterproof thermometer 39240 | | Generic Instrument Description | A device designed to measure temperature. | [table of contents | back to top] # **Project Information** Collaborative Research: Habitat fragmentation effects on fish diversity at landscape scales: experimental tests of multiple mechanisms (Habitat Fragmentation) Coverage: North Carolina Amount and quality of habitat is thought to be of fundamental importance to maintaining coastal marine ecosystems. This research will use large-scale field experiments to help understand how and why fish populations respond to fragmentation of seagrass habitats. The question is complex because increased fragmentation in seagrass beds decreases the amount and also the configuration of the habitat (one patch splits into many, patches become further apart, the amount of edge increases, etc). Previous work by the investigators in natural seagrass meadows provided evidence that fragmentation interacts with amount of habitat to influence the community dynamics of fishes in coastal marine landscapes. Specifically, fragmentation had no effect when the habitat was large, but had a negative effect when habitat was smaller. In this study, the investigators will build artificial seagrass habitat to use in a series of manipulative field experiments at an ambitious scale. The results will provide new, more specific information about how coastal fish community dynamics are affected by changes in overall amount and fragmentation of seagrass habitat, in concert with factors such as disturbance, larval dispersal, and wave energy. The project will support two early-career investigators, inform habitat conservation strategies for coastal management, and provide training opportunities for graduate and undergraduate students. The investigators plan to target students from underrepresented groups for the research opportunities. Building on previous research in seagrass environments, this research will conduct a series of field experiments approach at novel, yet relevant scales, to test how habitat area and fragmentation affect fish diversity and productivity. Specifically, 15 by 15-m seagrass beds will be created using artificial seagrass units (ASUs) that control for within-patch-level (~1-10 m2) factors such as shoot density and length. The investigators will employ ASUs to manipulate total habitat area and the degree of fragmentation within seagrass beds in a temperate estuary in North Carolina. In year one, response of the fishes that colonize these landscapes will be measured as abundance, biomass, community structure, as well as taxonomic and functional diversity. Targeted ASU removals will then follow to determine species-specific responses to habitat disturbance. In year two, the landscape array and sampling regime will be doubled, and half of the landscapes will be seeded with post-larval fish of low dispersal ability to test whether pre- or post-recruitment processes drive landscape-scale patterns. In year three, the role of wave exposure (a natural driver of seagrass fragmentation) in mediating fish community response to landscape configuration will be tested by deploying ASU meadows across low and high energy environments. # [table of contents | back to top] # **Funding** | Funding Source | Award | |--|-------------| | NSF Division of Ocean Sciences (NSF OCE) | OCE-1635950 | [table of contents | back to top]