Relative depredation (binomial) data from a squidpop tethering experiment in summer 2017 in Back Sound, North Carolina

Website: https://www.bco-dmo.org/dataset/780092 Data Type: Other Field Results Version: 1 Version Date: 2019-11-06

Project

» <u>Collaborative Research: Habitat fragmentation effects on fish diversity at landscape scales: experimental</u> <u>tests of multiple mechanisms</u> (Habitat Fragmentation)

Contributors	Affiliation	Role
<u>Fodrie, F. Joel</u>	University of North Carolina at Chapel Hill (UNC-Chapel Hill-IMS)	Principal Investigator
<u>Yarnall, Amy</u>	University of North Carolina at Chapel Hill (UNC-Chapel Hill-IMS)	Contact
York, Amber D.	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

Relative depredation (binomial) data from a squidpop tethering experiment in summer 2017 in Back Sound, North Carolina.

Table of Contents

- <u>Coverage</u>
- Dataset Description
 - <u>Methods & Sampling</u>
 - Data Processing Description
- Data Files
- Supplemental Files
- Related Publications
- <u>Parameters</u>
- Instruments
- Project Information
- Funding

Coverage

Spatial Extent: N:34.703251 E:-76.526267 S:34.651056 W:-76.587826 Temporal Extent: 2017-07-05 - 2017-08-31

Dataset Description

Relative depredation (binomial) data from a squidpop tethering experiment in summer 2017 in Back Sound, North Carolina.

Methods & Sampling

For Table and Figure references below, see the document "SquidpopAssay_statistical_analysis.pdf" in the Supplemental Files section.

Study Site Selection

We conducted our study across eight discrete seagrass meadows (hereafter referred to as landscapes) located in Back Sound, North Carolina (NC), USA (3442' N to 3439' N, 7637' W to 7631' W) (Fig. S1). All of our sampled landscapes were composed of a mixture of Back Sound's dominant seagrasses: eelgrass and shoal grass, Halodule wrightii (Ascherson 1868) (Yeager et al. 2016). Landscapes were chosen based upon available aerial imagery in Google Earth Pro as of February 19, 2017, and ground-truthed for changes in seasonal seagrass growth/senescence using summer, 2017, drone photography and ImageJ 1.x (Schneider et al. 2012). No discernable differences in landscape fragmentation states (e.g. total area, number of patches) were found between the two aerial imagery sources. All landscapes were relatively shallow (1-1.5 m depth at high tide), reasonably isolated from other seagrass beds (distance to nearest seagrass meadow = 112 17 m [mean standard error]) and were appropriately sized to encompass short-term (e.g., daily, monthly) movements of common seagrass-associated fauna in this system (Yeager et al. 2016). We identified similarly sized landscapes (25882 6592 m2) available in Back Sound by defining the minimum convex polygon surrounding the seagrass meadow, regardless of the total seagrass cover within the polygon. Among eight candidate landscapes of similar size, we defined four continuous landscapes and four fragmented landscapes based on the number of patches, the perimeter-to-area ratio, and the largest patch's percent cover of the total seagrass area (Table 1). Seagrass fragmentation is often naturally coupled with habitat loss (Wilcove et al. 1986), resulting in the mean seagrass area of our fragmented landscapes being nearly half that of our continuous landscapes (Table 1). Thus, our experiment was designed to examine the effects of fragmentation (i.e., the breaking apart of habitat concomitant with habitat loss) rather than fragmentation per se (i.e., the breaking apart of habitat without habitat loss; sensu Fahrig 2003).

Squidpop Assays

Squidpops were also used to measure relative "depredation" across landscapes (acknowledging that a combination of predation and scavenging may account for observed loss patterns). Squidpops are 1-cm 1-cm squares of dried squid mantle tied to 1-cm segments of 12-lbs test monofilament (Duffy et al. 2015). We attached squidpops to 60-cm long, 0.5-cm diameter, fiberglass stakes. Twenty squidpops were deployed (stakes pushed 50 cm into the sediment to prevent squidpop tangling in seagrass or burial in sediment) within each of the eight landscapes per assay date during July and August (July 5, July 13, July 26, August 8, and August 30). Within each landscape, 10 squidpops were haphazardly placed within seagrass edges, defined as 30 cm (a crab tether length) from the seagrass-mudflat interface. The other 10 squidpops were haphazardly placed in seagrass interiors, defined as ≥ 1 m from the seagrass-mudflat interface. Only patches with a radius of 1 m or larger were used for squidpops classified as 'interior'. However, patches with a radius of <1 m were used for a portion of our 'edge' squidpops. All squidpops were placed at least 1 m apart. A total of 720 squidpops were deployed (Table S1). Squidpop depredation assays did not occur in June due to lack of dried squid availability. During the first two squidpop deployment cycles we checked squidpop status (present, absent/eaten) at 1 h and 24 h. We observed nearly 100% squidpop removal by 24 h, so for the remaining three deployment cycles we performed status checks at 1 h and 2 h.

Point measurements of water temperature (C) were taken in each landscape at the location and time of all squidpop assays hand-held thermometers (Table S1). We chose temperature as our seasonality proxy (Fig. S2) because several other seasonally affected factors including faunal densities correlate with water temperature variability. Additionally, the measurement of temperature is easy, cheap, reliable, and comparable to previous studies.

Equipment:

Dried squid mantel: whole dried squid from Asian food market Tether materials: EcoStakes – tomato plant stakes 12-lbs test monofilament fishing line Pool noodles – cut into rounds for tether relocation floats Hand-held digital thermometer- LYNCH Waterproof thermometer 39240 Hand-held refractometer-VEE GEE STX-3 Salinity 0-100%o Hand-held Garmin GPSmap 78

Data Processing Description

Data processing: All data were entered electronically into an Excel spreadsheet.

BCO-DMO Data Manager Processing Notes:

- * exported submitted excel file to csv format
- * added a conventional header with dataset name, PI name, version date
- * modified parameter names to conform with BCO-DMO naming conventions
- * date format converted to ISO 8601 standard format yyyy-mm-dd

* cells with just a period as a value replaced will no-data values. No-data values in this dataset are displayed as the missing data identifier "nd" for "no data" in the BCO-DMO system.

* added ISO_DateTime_ISO_In from local date and time in columns.

* commas in comments replaced with semicolons to support csv output

[table of contents | back to top]

Data Files

File

File

Squidpop_Data.csv(Comma Separated Values (.csv), 94.44 KB) MD5:a9d8dc88e522e3e283cb9edf4a527838

Primary data file for dataset ID 780092

[table of contents | back to top]

Supplemental Files

SquidpopAssay_statistical_analysis.pdf(Portable Document Format (.pdf), 182.70 KB) MD5:2619709c57fe0e582d431a9e3a388875

SquidpopAssay statistical analysis, tables, and figures

[table of contents | back to top]

Related Publications

Duffy, J. E., Ziegler, S. L., Campbell, J. E., Bippus, P. M., & Lefcheck, J. S. (2015). Squidpops: A Simple Tool to Crowdsource a Global Map of Marine Predation Intensity. PLOS ONE, 10(11), e0142994. doi:<u>10.1371/journal.pone.0142994</u> *Methods*

Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. doi:<u>10.1146/annurev.ecolsys.34.011802.132419</u> *Methods*

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org Software

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/<u>10.1038/nmeth.2089</u> *Software*

Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation Biology, Sinauer, Sunderland, MA pp 237–256. <u>https://www.fws.gov/southwest/es/documents/r2es/litcited/lpc_2012/wilcove_et_al_1986.pdf</u> *Methods*

Yeager, L. A., Keller, D. A., Burns, T. R., Pool, A. S., & Fodrie, F. J. (2016). Threshold effects of habitat fragmentation on fish diversity at landscapes scales. Ecology, 97(8), 2157–2166. doi:<u>10.1002/ecy.1449</u> *Methods*

[table of contents | back to top]

Parameters

Parameter	Description	Units
Date	Date tethered crab deployed in ISO 8601 format yyyy-mm-dd	unitless
SitelD	Name of seagrass bed in which tether was deployed	unitless
C_F	Fragmentation state of seagrass bed: $C = Continuous$, $F = Fragmented$	unitless
lat	Latitude	decimal degrees
lon	Longitude	decimal degrees
percent_sg_cov	Percent/100 cover of seagrass with the minimum convex polygon surrounding the seagrass meadow	dimensionless
AirTemp_C	Air temperature at time and place of tether deployment	degrees Celsius (C)
WaterTemp_C	Water temperature at time and place of tether deployment	degrees Celsius (C)
Salinity_PSU	Salinity of water at time and place of tether deployment	Practical Salinity Units (PSU)
Depth_m	Depth of water at time and place of tether deployment	meters (m)
HighTide	Time of high tide at place of tether deployment [EDT][GMT-4h] in format h:mm	unitless
LowTide	Time of low tide at place of tether deployment [EDT][GMT-4h] in format h:mm	unitless
TimeInFromHigh	At time of tether deployment, time passed since high tide in format h:mm	unitless
Tide	At time of tether deployment, ebb or flow tide	unitless
Bobber_Num	Individual ID number of tether (numbers may be repeated across dates)	per individual
E_I	Position of tether deployment with seagrass bed; $E = edge (\leq 0.3 m from seagrass/mudflat interface), I = Interior (>1 m from seagrass/mudflat interface)$	unitless
TimeIn	Local time of tether deployment [EDT][GMT-4h] in format h:mm	unitless
TimeOut	Local time of tether removal [EDT][GMT-4h] in format h:mm	unitless
hr1	Status of squidpop on tether at 1 hour from deployment time; $1 = $ present, $0 = $ absent	unitless
hr2	Status of squidpop on tether at 2 hours from deployment time; $1 = $ present, $0 = $ absent	unitless
hr24	Status of squidpop on tether at 24 hours from deployment time; $1 = $ present, $0 = $ absent	unitless
ISO_DateTime_UTC_In	Date Time (UTC) in ISO 8601 format yyyy-mm-ddTHH:MMZ	unitless
Notes	Notes relevant to individual tether	unitless

[table of contents | back to top]

Instruments

Dataset-specific Instrument Name	Hand-held Garmin GPSmap 78
Generic Instrument Name	GPS receiver
	Acquires satellite signals and tracks your location. This term has been deprecated. Use instead: <u>https://www.bco-dmo.org/instrument/560</u>

Dataset- specific Instrument Name	VEE GEE STX-3
Generic Instrument Name	Refractometer
Dataset- specific Description	Hand-held refractometer-VEE GEE STX-3 Salinity 0-100%o
	A refractometer is a laboratory or field device for the measurement of an index of refraction (refractometry). The index of refraction is calculated from Snell's law and can be calculated from the composition of the material using the Gladstone-Dale relation. In optics the refractive index (or index of refraction) n of a substance (optical medium) is a dimensionless number that describes how light, or any other radiation, propagates through that medium.

Dataset-specific Instrument Name	LYNCH Waterproof thermometer 39240	
Generic Instrument Name	Thermometer	
Dataset-specific Description	Hand-held digital thermometer-	
Generic Instrument Description	A device designed to measure temperature.	

[table of contents | back to top]

Project Information

Collaborative Research: Habitat fragmentation effects on fish diversity at landscape scales: experimental tests of multiple mechanisms (Habitat Fragmentation)

Coverage: North Carolina

Amount and quality of habitat is thought to be of fundamental importance to maintaining coastal marine ecosystems. This research will use large-scale field experiments to help understand how and why fish populations respond to fragmentation of seagrass habitats. The question is complex because increased fragmentation in seagrass beds decreases the amount and also the configuration of the habitat (one patch splits into many, patches become further apart, the amount of edge increases, etc). Previous work by the investigators in natural seagrass meadows provided evidence that fragmentation interacts with amount of habitat to influence the community dynamics of fishes in coastal marine landscapes. Specifically, fragmentation had no effect when the habitat was large, but had a negative effect when habitat was smaller. In this study, the investigators will build artificial seagrass habitat to use in a series of manipulative field experiments at an ambitious scale. The results will provide new, more specific information about how coastal fish community dynamics are affected by changes in overall amount and fragmentation of seagrass habitat, in concert with factors such as disturbance, larval dispersal, and wave energy. The project will support two early-career investigators, inform habitat conservation strategies for coastal management, and provide training opportunities for graduate and undergraduate students. The investigators plan to target students from underrepresented groups for the research opportunities.

Building on previous research in seagrass environments, this research will conduct a series of field

experiments approach at novel, yet relevant scales, to test how habitat area and fragmentation affect fish diversity and productivity. Specifically, 15 by 15-m seagrass beds will be created using artificial seagrass units (ASUs) that control for within-patch-level (~1-10 m2) factors such as shoot density and length. The investigators will employ ASUs to manipulate total habitat area and the degree of fragmentation within seagrass beds in a temperate estuary in North Carolina. In year one, response of the fishes that colonize these landscapes will be measured as abundance, biomass, community structure, as well as taxonomic and functional diversity. Targeted ASU removals will then follow to determine species-specific responses to habitat disturbance. In year two, the landscape array and sampling regime will be doubled, and half of the landscapes will be seeded with post-larval fish of low dispersal ability to test whether pre- or post-recruitment processes drive landscape-scale patterns. In year three, the role of wave exposure (a natural driver of seagrass fragmentation) in mediating fish community response to landscape configuration will be tested by deploying ASU meadows across low and high energy environments.

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	<u>OCE-1635950</u>

[table of contents | back to top]