Dataset: Aerosol and seawater beryllium-7 concentrations from Leg 2 (Hilo, HI to Papeete, French Polynesia) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1815) on R/V Roger Revelle from October to November 2018

ValidatedFinal no updates expectedDOI: 10.26008/1912/bco-dmo.781806.1Version 1 (2020-04-20)Dataset Type:Cruise Results

Principal Investigator: David C. Kadko (Florida International University)

BCO-DMO Data Manager: Shannon Rauch ()


Program: U.S. GEOTRACES (U.S. GEOTRACES)

Project: US GEOTRACES Pacific Meridional Transect (GP15) (U.S. GEOTRACES PMT)

Project: GEOTRACES Pacific Meridional Transect: Measurement of Beryllium-7 as a Tracer of Upper Ocean Processes (PMT Be-7)


Abstract

Aerosol and seawater beryllium-7 concentrations from Leg 2 (Hilo, HI to Papeete, French Polynesia) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1815) on R/V Roger Revelle from October to November 2018

Be-7 Aerosol:
Aerosol samples were collected between Sept 20, 2018 and Nov 23, 2018 during the U.S. GEOTRACES PMT cruise, R/V Roger Revelle (RR1814), 18 September 2018 - 24 November 2018, Seattle, Washington - Papeete, Tahiti, French Polynesia (with a port stop in Hilo, Hawaii, 21-25, October 2018). Aerosol samples were obtained with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed (Wallace et al, 1977; Baker et al., 2006) 47mm diameter Whatman-41 (W-41) filters, using procedures of the US GEOTRACES aerosol program (Morton et al., 2013). In order to minimize the filter blanks for our experiment, the W-41 filters were pre-cleaned before deployment using three cycles of leaching with 0.5M HCl (Optima) then rinsing with ultra-high purity water (UHP water) according to trace element protocols in a HEPA-filtered laminar flow hood (Morton et al., 2013; similar to Baker et al., 2006).

For 7Be, three of the 47mm aerosol samples were stacked in a plastic Petri dish and counted by gamma spectroscopy. Be-7 has a readily identifiable gamma peak at 478 keV. The counting system was calibrated for all samples by preparing a commercial standard in geometry identical to the samples.

Be-7 Seawater:
A weighted sampling hose, attached to a submersible pump with a portable ctd was deployed over the aft of the ship to collect seawater for Be-7 analysis. The seawater was collected in plastic 700 liter holding tanks and then passed through iron-oxide impregnated acrylic fiber filters (adsorbs Be-7). The efficiency of the fiber for extraction of Be from seawater was determined by adding stable Be atomic absorption standards to a drum containing seawater, pumping the water through an iron fiber cartridge, and at every 100 L measuring the Be content of the cartridge effluent. Based on several trials, it was found that for sample volumes in the range 400-700L, extraction efficiencies are respectively, 82 ± 3% to 76 ± 2%. 

All fibers were returned to the lab where they were dried and ashed. Fiber samples were pressed into pellets. All samples were then placed over a low background germanium gamma detector. 7Be has a readily identifiable peak at 478keV. The detector is calibrated for these samples by adding a commercially prepared mixed solution of known gamma activities to ashed fiber and counting in the appropriate geometry.


Related Datasets

Continues

Dataset: GP15 Be-7 Leg 1
Relationship Description: GP15 was made up of two cruise legs, RR1814 (Leg 1) and RR1815 (Leg 2).
Kadko, D. (2020) Aerosol and seawater beryllium-7 concentrations from Leg 1 (Seattle, WA to Hilo, HI) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1814) on R/V Roger Revelle from September to October 2018. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-04-20 doi:10.26008/1912/bco-dmo.781794.1

Related Publications

General

Kadko, D. (2017). Upwelling and primary production during the U.S. GEOTRACES East Pacific Zonal Transect. Global Biogeochemical Cycles. doi:10.1002/2016gb005554
Methods

Baker, A. R., French, M., & Linge, K. L. (2006). Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophysical Research Letters, 33(7). doi:10.1029/2005gl024764
Methods

Kadko, D., & Olson, D. (1996). Beryllium-7 as a tracer of surface water subduction and mixed-layer history. Deep Sea Research Part I: Oceanographic Research Papers, 43(2), 89–116. doi:10.1016/0967-0637(96)00011-8
Methods

Morton, P. L., Landing, W. M., Hsu, S.-C., Milne, A., Aguilar-Islas, A. M., Baker, A. R., … Zamora, L. M. (2013). Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnology and Oceanography: Methods, 11(2), 62–78. doi:10.4319/lom.2013.11.62
Methods

Wallace, G. T., Fletcher, I. S., & Duce, R. A. (1977). Filter washing, a simple means of reducing blank values and variability in trace metal environmental samples. Journal of Environmental Science and Health . Part A: Environmental Science and Engineering, 12(9), 493–506. doi:10.1080/10934527709374775