Contributors | Affiliation | Role |
---|---|---|
McCarthy, Matthew D. | University of California-Santa Cruz (UCSC) | Principal Investigator |
Guilderson, Thomas | University of California-Santa Cruz (UCSC) | Co-Principal Investigator |
Rauch, Shannon | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Amino acid enantiomeric ratios (D/L) of high and low molecular weight (HMW, LMW) DOM collected from the North Pacific Subtropical Gyre and Central North Atlantic. These data were published in Broek et al. (2019) and Broek et al. (2017).
Sample Collection
Samples were collected on two separate research cruises aboard the R/V Kilo Moana in August 2014 and May 2015. Sampling was conducted at the Hawaii Ocean Time Series Station ALOHA (A Long-Term Oligotrophic Habitat Assessment; 22° 45'N, 158° 00'W) and the Bermuda Atlantic Time Series Site (BATS; 31° 40'N, 64° 10'W) in the Central North Atlantic.
Surface water was sampled via the vessel's underway sampling system. The intake pipe is situated on the forward starboard hull section of the vessel approximately 7.5 m below the waterline. The laboratory seawater tap was allowed to flush for 2 hours prior to each sampling. Seawater was pre-filtered through 53 µm Nitex mesh, and pumped through a 0.2 µm polyethersulfone (PES) cartridge filter (Shelco Filters, Micro Vantage, water grade, 9.75" DOE, polycarbonate housing) prior to introduction to the ultrafiltration system. Large volume subsurface water samples were collected using successive casts of a rosette equipped with 24 x 12 L Niskin bottles.
Tangential-Flow Ultrafiltration
The main UF system was constructed using a modified design of the system described in Roland et al. (2009), and expanded on by Walker et al. (2011). Briefly, the system was comprised of four-spiral wound PES UF membranes, having a nominal molecular weight cut off of 2.5 kD (GE Osmonics GH2540F30, 40-inch long, 2.5-inch diameter). The membranes were mounted in stainless steel housings, plumbed in parallel to a 100 L fluorinated HDPE reservoir, with flow driven by a 1.5 HP stainless steel centrifugal pump (Goulds Pumps, Stainless steel centrifugal pump, NPE series 1 x 1-1/4 -6, close coupled to a 1-1/2 horsepower, 3500 RPM, 60 Hz, 3 phase, Open Drip Proof Motor; 5.75 Inch Impeller Diameter, Standard Viton Mechanical Seals). All other system plumbing components contacting seawater were composed of polytetrafluoroethylene (PTFE) or stainless steel.
The system was run continuously at a membrane pressure of 40-50 psi, resulting in permeation flow rates of 1-2 L/min, depending primarily on the temperature of the feed seawater. Sample water was fed into the system using peristaltic pumps and platinum cured silicone tubing at a flow rate matched to the system permeation rates to ensure a constant system volume of approximately 100 L.
Seawater samples of 3000-4000 L were concentrated to a final retentate volume of 15-20 L, drained from the system into acid washed PC carboys and refrigerated (less than 12 hours at 2C) until the next phase of processing. Samples requiring storage for longer than 12 hours were frozen and stored at -20°C. The UF system was then reconfigured to a smaller volume system, consisting of a single membrane having a smaller nominal molecular weight cutoff (GE Osmonics GE2540F30, 40-inch long, 2.5-inch diameter, 1 kD MWCO), and a 2.5 L PES reservoir for further volume reduction and subsequent salt removal (diafiltration). Using this smaller system, samples were reduced to 2-3 L under lower pressure (25 psi, permeation rate = 250 mL/min). Samples were then diafiltered using 40 L of 18.2 MΩ Milli-Q (ultrapure) water, adding water to the sample retentate reservoir at the same rate of membrane permeation. Reduced and diafiltered samples were stored in acid washed PC bottles at -20°C for transport. In the laboratory, samples were further concentrated by rotary evaporation using pre-combusted glassware (450 °C, 5 h). A molecular sieve and a liquid nitrogen trap were placed between the vacuum pump and rotovap chamber to ensure no contamination of isolated material by back streaming of hydrocarbons or other contaminants. After reduction to 50-100 mL, samples were dried to powder via centrifugal evaporation in PTFE centrifuge tubes. Dry material was homogenized with an ethanol cleaned agate mortar and pestle, transferred to pre-combusted glass vials, and stored in a desiccation cabinet until subsequent analyses.
Solid Phase Extraction
Solid phase extraction was conducted using PPL sorbent (Agilent Bondesil PPL, 125 µm particle size, part # 5982-0026) following the general recommendations of Dittmar et al. (2008) and Green et al. (2014), including loading rates, seawater to sorbent ratios, and elution volumes and rates. Between 300 and 500 g of sorbent was used for each extraction, depending on sample volume and DOC concentration, with average loading of 4.2 ± 1.5 L UF permeate per g sorbent representing 1.9 ± 0.6 mg DOC per g sorbent or a DOC to sorbent mass ratio of 1:600 ± 200. This is in line with both the recommendations of Dittmar et al. (2008) (maximum loading = 10 L seawater per g sorbent) and Li et al. (2016) (DOC to sorbent ratio = 1:800). Permeate from the UF system was fed through PTFE tubing to a pair of 200 L HDPE barrels. The permeate water was then acidified in 200 L batches to pH 2 by adding 400 mL of 6 M HCl (Fisher Chemical, ACS Plus grade). Batch samples were mixed continuously during collection, acidification, and loading using a peristaltic pump and platinum cured Si and PTFE tubing positioned at the surface and bottom of each barrel. Acidified batches of seawater permeate were then pumped through the SPE sorbent. SPE flow rates were matched to UF permeation rates (1-2 L/min), such that a pair of 200 L barrels allowed one barrel to be filled while the contents of the other was passed through the sorbent.
Three custom SPE column configurations were used to contain the sorbent material. The column configuration was modified several times for ease of use on subsequent cruises. First, an open, gravity fed, large (49 mm ID x 1000 mm length, 1875 mL volume) glass chromatography column with 40 µm fritted disk and PTFE stopcock (Kimble-Chase, Kontes) was used. Next, we tested a custom built high-pressure SS housing (10 cm ID x 3.5 cm bed height), and finally a parallel combination of 2 medium-pressure glass chromatography columns (Kimble-Chase, Kontes, Chromaflex LC, 4.8 mm ID x 30 cm, 543 mL volume). While all designs proved to be functionally equivalent, the latter parallel combination of 2 medium-pressure glass columns ultimately provided the best configuration in order to maximize flow rates while simultaneously optimizing the ratio of sorbent bed height to loading speed. Further, the commercial availability and ease of use associated with this configuration made it our preferred design.
Following sample loading, the SPE sorbent was desalted with 6 L of pH 2 ultrapure water at a low flow rate (250-300 mL/min). After desalting, the SPE sorbent was transferred to a glass chromatography column (75 mm ID x 300 mm length, 40 µm fritted disk, PTFE stopcock) with ultrapure water rinses to ensure quantitative transfer. Isolated organic material was then eluted from the sorbent with five to six 500 mL additions of methanol. The eluted methanol solution was stored in pre-combusted amber glass bottles at -20°C for transport. Similar to UF samples, the methanol-eluted solutions were first reduced by rotary evaporation to 50-100 mL. Samples were then dried to powder via centrifugal evaporation in PTFE centrifuge tubes. Dry material was homogenized with an ethanol cleaned agate mortar and pestle, transferred to pre-combusted glass vials, and stored in a desiccation cabinet until elemental and isotopic analyses.
Amino Acid Enantiomeric Analysis
AA enantiomers were analyzed by gas chromatography-mass spectrometry (GC-MS; Agilent 7890A + 5975B) using a chiral column (Altech Chirasi-L-Val, 50 m length, 0.25 mm internal diameter, 0.16 μm film thickness). 1 μL of sample was injected through a splitless inlet at 200°C, using helium carrier (0.9 mL/min). Individual amino acids were separated using a 4-ramp, 57.5 min temperature program: 45°C start; 2°C/min to 75°C; 4°C/min to 110°C; 1°C/min to 125°C; 4°C/min to a final temperature of 200°C. Quantification was based on retention times for authentic D and L standards of each AA, coupled with ion peak areas obtained using single-ion monitoring, based on the following characteristic ion fragments (m/z): Alanine (Ala), 140; valine (Val), 168.1; threonine (Thr), 153; glycine (Gly), 126; isoleucine and leucine (Ile and Leu), 182.1; serine (Ser), 138; proline (Pro), 166.1; aspartic acid (Asp), 184; glutamic acid (Glu), 180; and phenylalanine (Phe), 190.1. Total amino acid yields, and relative abundance were quantified using mixed L-AA standards in a linear four-point calibration curve ranging from 1-1000 μmol/AA. For each AA, peak areas for both enantiomers were converted to molar quantities using the calibration curve for the corresponding ion fragment. Molar percentage abundance (Mol%) for each AA measured was calculated using the sum of the D and L enantiomers.
File |
---|
DL_ratios.csv (Comma Separated Values (.csv), 10.43 KB) MD5:f6a1e6bdaab290547314fec09831ad08 Primary data file for dataset ID 811458 |
Parameter | Description | Units |
location | Sample collection location. HOT = Hawaii Ocean Time Series station ALOHA (22° 45'N, 158° 00'W) in North Pacific Subtropical Gyre (NPSG); BATS = Hawaii Ocean Time Series station ALOHA (22° 45'N, 158° 00'W) in North Pacific Subtropical Gyre (NPSG) | unitless |
year | Year of sample collection; format: YYYY | unitless |
season | Season of sample collection | unitless |
sample_type | DOM Fraction | unitless |
depth | Sample depth | meters (m) |
amino_acid | Amino acid | unitless |
Mol_pcnt | Relative amino acid molar abundance | unitless (percent) |
Mol_pcnt_stdev | Standard deviation of Mol_pcnt | unitless (percent) |
pcnt_D | Relative amount of D-amino acid enantiomer | unitless (percent) |
pcnt_D_stdev | Standard deviation of pcnt_D | unitless (percent) |
D_L_ratio | Ratio of D-AA to L-AA abundance | unitless |
D_L_ratio_stdev | Standard deviation of D_L_ratio | unitless |
Dataset-specific Instrument Name | GC-MS; Agilent 7890A + 5975B |
Generic Instrument Name | Gas Chromatograph |
Generic Instrument Description | Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC) |
Dataset-specific Instrument Name | GC-MS; Agilent 7890A + 5975B |
Generic Instrument Name | Mass Spectrometer |
Generic Instrument Description | General term for instruments used to measure the mass-to-charge ratio of ions; generally used to find the composition of a sample by generating a mass spectrum representing the masses of sample components. |
Dataset-specific Instrument Name | rosette equipped with 24 x 12 L Niskin bottles |
Generic Instrument Name | Niskin bottle |
Generic Instrument Description | A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc. |
Dataset-specific Instrument Name | underway sampling system |
Generic Instrument Name | Pump - Surface Underway Ship Intake |
Generic Instrument Description | The 'Pump-underway ship intake' system indicates that samples are from the ship's clean water intake pump. This is essentially a surface water sample from a source of uncontaminated near-surface (commonly 3 to 7 m) seawater that can be pumped continuously to shipboard laboratories on research vessels. There is typically a temperature sensor near the intake (known as the hull temperature) to provide measurements that are as close as possible to the ambient water temperature. The flow from the supply is typically directed through continuously logged sensors such as a thermosalinograph and a fluorometer. Water samples are often collected from the underway supply that may also be referred to as the non-toxic supply. Ideally the data contributor has specified the depth in the ship's hull at which the pump is mounted. |
Website | |
Platform | R/V Kilo Moana |
Start Date | 2015-05-03 |
End Date | 2015-05-12 |
Description | Original cruise data are available from the NSF R2R data catalog |
Website | |
Platform | R/V Kilo Moana |
Start Date | 2015-08-15 |
End Date | 2015-09-12 |
Website | |
Platform | R/V Atlantic Explorer |
Start Date | 2015-08-21 |
End Date | 2015-08-25 |
Website | |
Platform | R/V Atlantic Explorer |
Start Date | 2016-05-03 |
End Date | 2016-05-11 |
Website | |
Platform | R/V Kilo Moana |
Start Date | 2014-08-29 |
End Date | 2014-09-11 |
Description | Original cruise data are available from the NSF R2R data catalog |
Dissolved organic nitrogen is one of the most important - but perhaps least understood - components of the modern ocean nitrogen cycle. While dissolved organic nitrogen represents a main active reservoir of fixed and seemingly biologically-available nitrogen, at the same time most of ocean's dissolved organic nitrogen pool is also apparently unavailable for use by organisms. Recently, the idea of the "Microbial Carbon Pump" has emerged, providing a renewed focus on microbes as primary agents for the formation of biologically-available dissolved material. However, the role that microbes play in transformation of biologically-available dissolved organic nitrogen is still lacking. In order to fill gaps in this knowledge, researchers from the University of California Santa Cruz will apply a series of new analytical approaches to test the role of microbial source and transformation in formation of the ocean's biologically-available dissolved organic nitrogen pool. Results from this study will address one of the major unknowns of both chemical oceanography and the ocean nitrogen cycle.
Broader Impacts:
This proposal will provide oceanographers new tools to test ideas of microbial organic matter sequestration in a world where the oceans are rapidly changing. High school, undergraduate, graduate and post-doctoral education will be furthered through active participation in lab, field, and data synthesis activities.
Funding Source | Award |
---|---|
NSF Division of Ocean Sciences (NSF OCE) |