Dataset: Microbial ESV counts for Acropora millepora corals exposed to Sargassum seaweed

This dataset has not been validatedPreliminary and in progressVersion 0 (2020-07-13)Dataset Type:experimental

Principal Investigator: Mark E. Hay (Georgia Institute of Technology)

Co-Principal Investigator, Contact: Cody Clements (Georgia Institute of Technology)

BCO-DMO Data Manager: Nancy Copley (Woods Hole Oceanographic Institution)


Project: Killer Seaweeds: Allelopathy against Fijian Corals (Killer Seaweeds)


Abstract

Microbial ESV counts for Acropora millepora corals exposed to Sargassum

Microbial ESV counts for Acropora millepora corals exposed to Sargassum. These results are published in Figure 2 of Clements et al (2020). See 'Master ID Sheet.xlsx' in Supplemental Files for the treatment descriptions.

Because this data table is extremely wide, with 2368 columns and 42 data rows, it is only available as a downloadable file. See the Data Files section.

Columns in the data table:
Label: The ID for each sample
*All subsequent columns are counts for each exact sequence variant (ESV)


Related Datasets

No Related Datasets

Related Publications

Results

Clements, C. S., Burns, A. S., Stewart, F. J., & Hay, M. E. (2020). Seaweed-coral competition in the field: effects on coral growth, photosynthesis and microbiomes require direct contact. Proceedings of the Royal Society B: Biological Sciences, 287(1927), 20200366. doi:10.1098/rspb.2020.0366
Methods

CLARKE, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18(1), 117–143. doi:10.1111/j.1442-9993.1993.tb00438.x
Methods

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. doi:10.1038/nmeth.f.303
Methods

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Applied and Environmental Microbiology, 79(17), 5112–5120. doi:10.1128/aem.01043-13
Methods

Pinheiro, J.D., Bates, D., DebRoy, S., Sarkar, D. and the R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1–131. http://CRAN.R-project.org package=nlme