One meter binned CTD data collected aboard the R/V Pelican during PE17-04 and PE17-20 along the Northern Gulf of Mexico, specifically the Louisiana Shelf region dominated by the discharge of the Mississippi River plume. Website: https://www.bco-dmo.org/dataset/822194 Data Type: Cruise Results Version: 1 Version Date: 2020-08-27 #### **Proiect** » The biotic and abiotic controls on the Silicon cycle in the northern Gulf of Mexico (CLASiC) | Contributors | Affiliation | Role | |-----------------------|---|---------------------------| | Krause, Jeffrey W. | Dauphin Island Sea Lab (DISL) | Principal Investigator | | <u>Maiti, Kanchan</u> | Louisiana State University (LSU-DOCS) | Co-Principal Investigator | | Haskins, Christina | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager | #### Abstract Coastal LouisianA Silicon Cycling (CLASiC) 1-m binned CTD data collected aboard the R/V Pelican during PE17-04 (late summer 2016) and 17-20 (May 2017) along the Northern Gulf of Mexico, specifically the Louisiana Shelf region dominated by the discharge of the Mississippi River plume. # **Table of Contents** - Coverage - <u>Dataset Description</u> - Methods & Sampling - Data Processing Description - Data Files - Parameters - Instruments - Deployments - Project Information - Funding # Coverage Spatial Extent: N:29.0711 E:-89.4523 S:28.2633 W:-91.6114 **Temporal Extent**: 2016-08-28 - 2017-05-12 ### Methods & Sampling Multiple hydrocasts were conducted at stations denoted in the bottle-file metadata. A SeaBird CTD was used with sensors for the following measurements: conductivity/salinity, temperature, pressure, dissolved oxygen, water transmission/attenuation, chlorophyll a fluorescence and photosynthetically active radiation. All hydrocast data were processed to 1-m bins. ## **Data Processing Description** SeaBird files were processed in Seasave (Software Version V 7.25.0.151) and binned at 1-m depth intervals. **BCO-DMO Data Manager Processing Notes:** - * added a conventional header with dataset name, PI name, version date - * modified parameter names to conform with BCO-DMO naming conventions - * blank values in this dataset are displayed as "nd" for "no data." nd is the default missing data identifier in the BCO-DMO system. - * removed all spaces in headers and replaced with underscores - * removed all units from headers - * converted dates to ISO Format yyyy-mm-dd - * merged Date_Zulu and Time_Zulu to create ISO_DateTime_UTC and then removed Zulu columns - * set Types for each data column - * merged the CLASiC 2016 and 2017 CTD data files into one dataset - * rounded latitude and longitude to four decimal places # [table of contents | back to top] ## **Data Files** ### File **CTD_concat.csv**(Comma Separated Values (.csv), 335.40 KB) MD5:0c20f6c7c0154a590494c237f45e4c6f Primary data file for dataset ID 822194 [table of contents | back to top] ## **Parameters** | Parameter | Description | Units | |----------------------|--|-------------------------------| | Cruise_Name | Name of specific cruise, no units | unitless | | Cast_Number | CTD Number (chronological) | unitless | | Latitude | Latitude of hydrocast, decimal degrees North | decimal degrees | | Longitude | Longitude of hydrocast, decimal degrees East | decimal degrees | | ISO_DateTime_UTC | Date/Time (UTC) ISO formatted | YYYY-MM-
DDTHH:MM:SS[.xx]Z | | Date_Local | Local date of hydrocast | YYYY-MM-DD | | Time_Local | Local time of hydrocast | HH:MM (24 hour clock) | | Depth | [salt water, m] | meter (m) | | Temperature | CTD Temperature [ITS-90] | degrees Celsius | | Salinity | CTD Salinity | PSU | | Specific_Conductance | CTD Conductivity | mS/cm | | Oxygen | CTD Oxygen sensor | mg/l | | Beam_Transmission | Beam Transmission on WET Labs C-Star | % | | Beam_Attenuation | Beam Attenuation on WET Labs C-Star | 1/m | | Fluorescence | Chlorophyll Fluorescence | ug/l | | PAR_Irradiance | Photosynthetically Active Radiation/Irradiance, Biospherical Instruments | uE/m2/s | # [table of contents | back to top] ## Instruments | Dataset-
specific
Instrument
Name | | |--|--------------------------| | Generic
Instrument
Name | CTD Sea-Bird SBE 911plus | | Generic
Instrument
Description | | | Dataset-specific
Instrument Name | | |-------------------------------------|--| | Generic
Instrument Name | CTD-fluorometer | | | A CTD-fluorometer is an instrument package designed to measure hydrographic information (pressure, temperature and conductivity) and chlorophyll fluorescence. | | Dataset-
specific
Instrument
Name | | |--|---| | Generic
Instrument
Name | LI-COR Biospherical PAR Sensor | | Generic
Instrument
Description | The LI-COR Biospherical PAR Sensor is used to measure Photosynthetically Available Radiation (PAR) in the water column. This instrument designation is used when specific make and model are not known. | | Dataset-specific
Instrument
Name | | |--|--| | Generic
Instrument
Name | Sea-Bird SBE 43 Dissolved Oxygen Sensor | | Generic
Instrument
Description | The Sea-Bird SBE 43 dissolved oxygen sensor is a redesign of the Clark polarographic membrane type of dissolved oxygen sensors. more information from Sea-Bird Electronics | | Dataset-
specific
Instrument
Name | | |--|--| | Generic
Instrument
Name | WET Labs {Sea-Bird WETLabs} C-Star transmissometer | | Generic | The C-Star transmissometer has a novel monolithic housing with a highly intgrated opto-
electronic design to provide a low cost, compact solution for underwater measurements of
beam transmittance. The C-Star is capable of free space measurements or flow-through
sampling when used with a pump and optical flow tubes. The sensor can be used in profiling,
moored, or underway applications. Available with a 6000 m depth rating. More information on
Sea-Bird website: https://www.seabird.com/c-star-transmissometer/product?id=60762467717 | ## [table of contents | back to top] # **Deployments** ### PE17-20 | Website | https://www.bco-dmo.org/deployment/792830 | | |-------------|---|--| | Platform | R/V Pelican | | | Start Date | 2017-05-03 | | | End Date | 2017-05-13 | | | Description | More information about this cruise can be found in R2R: https://www.rvdata.us/search/cruise/PE17-20 | | ### PE17-04 | Website | https://www.bco-dmo.org/deployment/822209 | | |------------|---|--| | Platform | R/V Pelican | | | Start Date | 2016-08-26 | | | End Date | 2016-09-06 | | ## [table of contents | back to top] # **Project Information** The biotic and abiotic controls on the Silicon cycle in the northern Gulf of Mexico (CLASiC) **Coverage**: Northern Gulf of Mexico, specifically the Louisiana Shelf region dominated by the discharge of the Mississippi River on the western side of the delta ### NSF Award Abstract: The Louisiana Shelf system in the northern Gulf of Mexico is fed by the Mississippi River and its many tributaries which contribute large quantities of nutrients from agricultural fertilizer to the region. Input of these nutrients, especially nitrogen, has led to eutrophication. Eutrophication is the process wherein a body of water such as the Louisiana Shelf becomes enriched in dissolved nutrients that increase phytoplankton growth which eventually leads to decreased oxygen levels in bottom waters. This has certainly been observed in this area, and diatoms, a phytoplankton which represents the base of the food chain, have shown variable silicon/nitrogen (Si/N) ratios. Because diatoms create their shells from silicon, their growth is controlled not only by nitrogen inputs but the availability of silicon. Lower Si/N ratios are showing that silicon may be playing an increasingly important role in regulating diatom production in the system. For this reason, a scientist from the University of South Alabama will determine the biogeochemical processes controlling changes in Si/N ratios in the Louisiana Shelf system. One graduate student on their way to a doctorate degree and three undergraduate students will be supported and trained as part of this project. Also, four scholarships for low-income, high school students from Title 1 schools will get to participate in a month-long summer Marine Science course at the Dauphin Island Sea Laboratory and be included in the research project. The study has significant societal benefits given this is an area where \$2.4 trillion gross domestic product revenue is tied up in coastal resources. Since diatoms are at the base of the food chain that is the biotic control on said coastal resources, the growth of diatoms in response to eutrophication is important to study. Eutrophication of the Mississippi River and its tributaries has the potential to alter the biological landscape of the Louisiana Shelf system in the northern Gulf of Mexico by influencing the Si/N ratios below those that are optimal for diatom growth. A scientist from the University of South Alabama believes the observed changes in the Si/N ratio may indicate silicon now plays an important role in regulating diatom production in the system. As such, understanding the biotic and abiotic processes controlling the silicon cycle is crucial because diatoms dominate at the base of the food chain in this highly productive region. The study will focus on following issues: (1) the importance of recycled silicon sources on diatom production; (2) can heavily-silicified diatoms adapt to changing Si/N ratios more effectively than lightly-silicified diatoms; and (3) the role of reverse weathering in sequestering silicon thereby reducing diffusive pore-water transport. To attain these goals, a new analytical approach, the PDMPO method (compound 2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole) that quantitatively measures taxa-specific silica production would be used. ## [table of contents | back to top] # **Funding** | Funding Source | Award | |--|-------------| | NSF Division of Ocean Sciences (NSF OCE) | OCE-1558957 | [table of contents | back to top]