Dataset: Application of a rapid microbiome characterization pipeline to corals afflicted with Stony Coral Tissue Loss Disease in St. Thomas, US Virgin Islands.

Final no updates expectedDOI: 10.26008/1912/bco-dmo.833133.1Version 1 (2020-12-07)Dataset Type:Other Field Results

Principal Investigator: Amy Apprill (Woods Hole Oceanographic Institution)

Co-Principal Investigator: Marilyn Brandt (University of the Virgin Islands Center for Marine and Environmental Studies)

Student: Cynthia Carroll Becker (Woods Hole Oceanographic Institution)

BCO-DMO Data Manager: Nancy Copley (Woods Hole Oceanographic Institution)


Project: RAPID: Collaborative Research: Predicting the Spread of Multi-Species Coral Disease Using Species Immune Traits (Multi-Species Coral Disease)


Abstract

Application of a rapid microbiome characterization pipeline to corals afflicted with Stony Coral Tissue Loss Disease in St. Thomas, United States Virgin Islands.

Application of a rapid microbiome characterization pipeline to corals afflicted with Stony Coral Tissue Loss Disease in St. Thomas, United States Virgin Islands. 


Related Datasets

IsRelatedTo

Dataset: NCBI accessions for RNAseq data from apparently healthy and SCTLD-affected Montastraea cavernosa
Beavers, K., Mydlarz, L. (2024) RNAseq data from apparently healthy and Stony Coral Tissue Loss Disease-affected Montastraea cavernosa coral collected from St. Thomas, US Virgin Islands in 2020. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-12-10 doi:10.26008/1912/bco-dmo.935630.1

Related Publications

Methods

Apprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129–137. doi:10.3354/ame01753
Methods

Berger, S. A., Krompass, D., & Stamatakis, A. (2011). Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood. Systematic Biology, 60(3), 291–302. doi:10.1093/sysbio/syr010
Methods

Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6(1). doi:10.1186/s40168-018-0605-2
Methods

Huggett, M. J., & Apprill, A. (2018). Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral‐associated microbes. Environmental Microbiology Reports, 11(3), 372–385. doi:10.1111/1758-2229.12686
Methods

Letunic, I., & Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44(W1), W242–W245. doi:10.1093/nar/gkw290