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Abstract
Model code and example model output for the EpiGen model used in Walworth et al. 2020. The EpiGen model is
an individual-based model of adaptation modified from Fisher’s model in which a simulated population moves
between a “new” and “ancestral” environment following a step function with varying frequencies. This model
calculates the rate of adaptation of the population where adaption proceeds through both fast variation, low
transmission and slow variation, high transmission (HT) modifications.
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Dataset Description

The EpiGen model is an individual-based model of adaptation modified from Fisher’s model in which a simulated
population moves between a “new” and “ancestral” environment following a step function with
varying frequencies. This model calculates the rate of adaptation of the population where adaption proceeds
through both fast variation, low transmission and slow variation, high transmission (HT) modifications.

The model output is for the adaptation of a population of 1000 individuals to a fluctuating environment (50
generations selective pressure, 50 generations non-selective) over 15000 generations. Every row is a
generation (time). Columns are different statistics characterizing the population of 1000 individuals.

Column 1 is generation #,
Column 2 is mean fitness at that time step,
Column 3 is mean # of HT modifications  at that time step,
Column 4 is mean number of LT modifications,
Column 5 is cumulative distance traveled towards optimum by HT modifications,
Column 6 is cum. distance traveled towards optimum by LT modifications,
Column 7 is standard dev of number of HT modifications,
Column 8 is standard dev of number of LT modifications,
Column 9 is mean distance traveled toward optimum by HT modifications,
Column 10 is sd of distance traveled toward optimum by HT modifications,
Column 11 is mean distance travelled toward optimum by LT modifications, and
Column 12 is sd of distance travelled toward optimum by LT modifications.

https://www.bco-dmo.org/dataset/862458
https://www.bco-dmo.org/project/668547
https://www.bco-dmo.org/person/51634
https://www.bco-dmo.org/person/748773


The model code is available in a .zip file: (see section data files). These files are also available in the following
GitHub repository: https://github.com/BCODMO/EpiGen

Methods & Sampling

We modeled an individual based adaptive walk using a modified version of Fisher’s geometric adaptation model
from Kronholm and Collins – the EpiGen model.

Fitness changes were driven by both LT (low transmission) modifications and HT (high transmission)
modifications, where HT modifications were fixed and LT modifications reverted with probability urev (LT
reversion rate). Model formulation: Phenotypic space was represented as an n-dimensional hypersphere where
an individual’s phenotype, z, was characterized by its distance from the hypersphere origin with radius r.

Fitness for each individual (w) was calculated as: w(z) = e(-z^2)/2 (Eq. 1)
such that an individual located at the origin had an optimal fitness of 1 and fitness declined as a Gaussian
function as the phenotype moved away from the origin of the hypersphere. The simulations began with z = r =
1 for all individuals in the population such that w = 0.6065.

The phenotype was altered through both LT and HT modifications which were represented  as mutational
vectors with random directions and magnitudes in phenotypic space. A new phenotypic value, Zmut, was then
calculated as:
zmut^2 = z^2 + m^2 + 2mzsin(sigma) (Eq. 2)
where m is the length of the mutational vector and sigma is the angle between the mutational vector and the
vector running from the current phenotype to the origin (sigma is an element of [-pi/2, pi/2]).

For each new modification, sigma in n-dimensional space was drawn from the probability density (P):
P=Zcos(sigma)^(n-2) (Eq. 3)
where Z is a scaling constant and was calculated as:
integral[pi/2,−pi/2] Zcos(sigma)^(n-2) dsigma = 1 (Eq. 4)

All model parameters are given in Supplemental Table 1 in Walwort et al., 2020.

The model was initialized with a population of N uniform individuals: here N was varied  from N = 103 to N =
105. HT modifications (NHT =10) and LT modifications (NLT =90) were then introduced into the population.
The modification supply (population size x modification rate) remained constant in each generation and no
more than one LT and one HT modification per generation was allowed to occur in a single individual. Eq. 2 was
used to calculate new mutant 2 phenotypes. Isotropic modifications in phenotypic space were represented
through the uniform distribution of HT modifications, mht, between 0 and 2r, mht ~ U(0, 2r), which generated
nonuniform fitness effects (2, 4). While LT modifications (mlt) were introduced in the same manner as HT
modifications, the effects of LT modifications were smaller than HT modifications with a uniform distribution of
me between 0 and l. Hence, mlt ~ U(0, l) instead of mht ~ U(0, 2r), where 2r is the maximum effect of HT
modifications and l £ 2r is the maximum effect of LT modifications. Fitness for each mutant phenotype was
then calculated using Eq. 1, and the next generation was then created by sampling from the current population
with replacement.

Selection: In the ‘new’ environment, selection was based on fitness in the ‘new’ environment so the sampling
probability of an individual was weighted by its fitness until N offspring had been produced. Selection in the
‘ancestral’ environment occurred through the stochastic removal of organisms with relatively more HT
modifications (i.e. higher HT modification abundance), which corresponds to stabilizing selection. We assume
that all modifications have an equal chance of being conditionally deleterious (being neutral or adaptive in the
‘selection’ or ‘new’ environment, but deleterious in some other environment) so that individuals who have
accumulated a high number of modifications in the selection environment
have a higher probability of decreased fitness in the ‘ancestral’ environment.

Data Processing Description

BCO-DMO Processing Notes:

* Originally submitted GitHub repository https://github.com/LevineLab/EpiGen forked to
https://github.com/BCODMO/EpiGen and tagged with release v1.0 which corresponds with this dataset
submission. This version is also attached in the data files section. The original repository may have continued

https://github.com/BCODMO/EpiGen
https://github.com/LevineLab/EpiGen
https://github.com/BCODMO/EpiGen


(Octet Stream, 1.17 MB)
MD5:c3cbc6b25d066d002677c8bdf846801d

(Z IP Archive (Z IP), 9.00 KB)
MD5:c4337f8e95cdd99a2ff09f6ca7ec1255

updates.

* Added model output example to section data files.
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Data Files

File

Epigen Model Example Output
filename: results_50n_all_15K_generations.txt

The model output is  for the adaptation of a population of 1000 individuals  to a fluctuating environment (50 generations selective pressure, 50 
generations non-selective) over 15000 generations. Every row is  a generation (time). Columns are different statistics characterizing the population 
of 1000 individuals .

    Column 1 is  generation #,

    Column 2 is  mean fitness at that time step,

    Column 3 is  mean # of HT modifications  at that time step,

    Column 4 is  mean number of LT modifications,

    Column 5 is  cumulative distance traveled towards optimum by HT modifications,

    Column 6 is  cum. distance traveled towards optimum by LT modifications,

    Column 7 is  standard dev of number of HT modifications,

    Column 8 is  standard dev of number of LT modifications,

    Column 9 is  mean distance traveled toward optimum by HT modifications,

    Column 10 is  sd of distance traveled toward optimum by HT modifications,

    Column 11 is  mean distance travelled toward optimum by LT modifications, and

    Column 12 is  sd of distance travelled toward optimum by LT modifications.

The model code is  available in a .zip file: [link to our local zip of package] These files are also available in the following GitHub repository: 
https://github.com/BCODMO/EpiGen

Epigen Model v1.0
filename: EpiGen-master.zip

The model code is  available in the following GitHub repository: https://github.com/BCODMO/EpiGen
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Parameters

Parameters for this dataset have not yet been identified
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Project Information

How does intensity and frequency of environmental variability affect phytoplankton growth?
(Enviro variability and phytoplankton growth)

Coverage: laboratory experiment

NSF Award Abstract:
Microscopic plants called phytoplankton are key members of global oceanic ecosystems, since their
photosynthesis supports the majority of the marine food chain and produces about as much oxygen as land
plants. Because of this, oceanographers have often carried out experiments examining how factors such as
temperature and carbon dioxide levels may affect phytoplankton growth. Most previous experiments have
used constant levels of temperature and carbon dioxide, but it is clear from looking at measurements from real
ocean ecosystems that these two factors often vary greatly over timescales of days to weeks. Using field and
laboratory experiments along with computer modeling, this project will test how the growth of several major
groups of phytoplankton differs under constant conditions of temperature and carbon dioxide, compared to
conditions in which these factors fluctuate in intensity and frequency. This research will give marine scientists a
better picture of how phytoplankton may respond to a varying natural environment today and in the future,
and therefore help us to understand how ocean food webs function to support critical living resources such as
fisheries. The project will train graduate and undergraduate students and a postdoctoral researcher, and the
lead scientists will be involved in an ocean science education program for largely minority high school students
from a downtown Los Angeles school district.

The goal of this project is to use laboratory culture and natural community experiments to understand how
realistically fluctuating temperature and pCO2 conditions may affect globally important phytoplankton groups in
ways that differ from the artificial constant exposures used in previous work. Culture experiments will test how
the intensity and frequency of short-term thermal and carbonate fluctuations affects the growth responses of
diazotrophic and picoplanktonic cyanobacteria, coccolithophores, and diatoms under both current and
projected future environmental conditions. These lab results will be supported and extended by parallel
experiments using mixed natural assemblages from the California upwelling regime, allowing us to test these
same questions using phytoplankton communities that experience large seasonal shifts between highly
dynamic thermal and carbonate system conditions during the spring upwelling season, and relatively much
more static conditions during fall stratification events. These results will be synthesized using a new generation
of numerical models that employ novel approaches to incorporating realistic environmental variations to allow
more accurate predictions of phytoplankton responses to a dynamic environment in today's marine
ecosystems, and in the future changing ocean.
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Funding

https://doi.org/10.1073/pnas.1919332117


Funding Source Award
NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
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http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1538525
https://www.bco-dmo.org/award/668546

