O exchange with water during denitrification with the denitrifier method (Biological Nitrogen Isotope Fractionation project)

Website: https://www.bco-dmo.org/dataset/865666 Data Type: experimental Version: 1 Version Date: 2021-12-01

Project

» <u>CAREER: The biological nitrogen isotope systematics of ammonium consumption and production</u> (Biological Nitrogen Isotope Fractionation)

Contributors	Affiliation	Role
<u>Granger, Julie</u>	University of Connecticut (UConn)	Principal Investigator
Zhou, Mengyang	University of Connecticut (UConn)	Student, Contact
<u>Chang, Bonnie X.</u>	University of Washington (UW)	Analyst
Newman, Sawyer	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

Effects of sample volume and salinity on O atom exchange with water during denitrification with the denitrifier method. The percentages of O atom exchange were derived from the regression slopes of δ 180N2O vs. δ 180H2O.

Table of Contents

- <u>Coverage</u>
- Dataset Description
 - <u>Methods & Sampling</u>
 - Data Processing Description
- Data Files
- <u>Related Datasets</u>
- Parameters
- <u>Project Information</u>
- Funding

Coverage

Temporal Extent: 2020-06-16 - 2020-08-19

Methods & Sampling

Sampling and analytical procedures:

Effects of sample volume and salinity on O atom exchange with water

Using the lab experiment data in the dataset "18O-labeled water", the percentage of O atom exchange with water during denitrification was derived from the regression slopes of $\delta^{18}O_{N2O}$ vs. $\delta^{18}O_{H2O}$.

Data Processing Description

Processing notes from researcher:

• Data were processed using Microsoft Excel

BCO-DMO processing notes

- Date formats were changed from mm/dd/yy to yyyy-mm-dd
- Spaces and units removed from column headers

[table of contents | back to top]

Data Files

File zhou_et_al_lab_data-7.csv(Comma Separated Values (.csv), 2.26 KB) MD5:8ae8728bbd1dad40da7f60ce08a71f67

Primary data file for dataset ID 865666

[table of contents | back to top]

Related Datasets

IsDerivedFrom

Zhou, M., Granger, J., Chang, B. X. (2022) **Analyses of nitrate reference solutions in 18O-labeled water with the denitrifier method (Biological Nitrogen Isotope Fractionation project).** Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2021-11-29 doi:10.26008/1912/bco-dmo.865519.1 [view at BCO-DMO]

[table of contents | back to top]

Parameters

Parameter	Description	Units
Strain	The denitrifying bacteria strains used in the laboratory experiment: P. aureofaciens	
Date	Date of the experiments; yyyy-mm-dd	unitless
Trial	Trial name	unitless
Solution	Nitrate reference materials IAEA-NO3 and USGS-34	unitless
Salinity_in_vial	Nitrate reference materials (IAEA-NO3 and USGS-34) were diluted with a mixture of DIW and nitrate-deplete surface Sargasso seawater to difference salinity	ppt
Concentration	Concentrations of nitrate reference solutions	µmol L- 1
Sample_volume	Sample volume injected to aliquot 10 nmol of nitrate	mL
O_exchange_ratio_x	The fraction of O atoms in the N2O product originated from water, x, was estimated from the slope of the observed delta 18ON2O vs. the corresponding delta 18OH2O	%
stdev_of_x	Propagated standard deviation of x for each trial	unitless

[table of contents | back to top]

Project Information

CAREER: The biological nitrogen isotope systematics of ammonium consumption and production

NSF Award Abstract:

The nitrogen (N) cycle in the marine environment is controlled by biological processes. Unfortunately, quantifying these processes and assessing their effect on the N cycle is difficult by direct measurements because of large spatial and temporal differences. Isotopic composition measurements of N provide a means to constrain these processes indirectly; however, there is still a great deal to be understood about isotope fractionation of recycled nitrogen through biological processes, which has made interpretation of novel nitrogen isotope data difficult. A researcher from the University of Connecticut plans to determine the influence of biological consumption and production on the isotope fractionation in ammonium. By helping to understand the processes surrounding fractionation of recycled ammonium at the organism level, this research will create a basis for which future researchers can better interpret isotope composition data to infer nitrogen cycle dynamics. A graduate student, a postdoctoral fellow, and two or more undergraduate students will be involved in the research. The researcher plans to integrate science with community-engaged learning by developing an undergraduate field and laboratory course that will require the students to present their research to stakeholders in the community. There will be a manual created for this course that will be disseminated in open-access forums for teachers hoping to develop similar courses.

Biological nitrogen isotope fractionation associated with nitrogen recycling remains poorly constrained despite the advent of a variety of new techniques to analyze nitrogen isotopes in recent years. The use of isotopic composition data can be incredibly useful to interpreting nitrogen cycle processes in the ocean that are difficult to measure directly, which makes it crucial to further understand the processes behind fractionation to catch up with the advancement of the datasets available to researchers. This research will characterize the isotope fractionation dynamics of ammonium during biological consumption and production. The researchers will investigate whether the characteristic low concentrations of ammonium in the surface ocean affect isotope fractionation when the ammonium is recycled and whether there is a trophic isotope effect associated with ammonium recycling by protozoan grazers. With this research, there will be a baseline from which researchers can interpret recycled nitrogen dynamics from ammonium isotope datasets. The methods of comparing nitrogen cycling studies will become significantly clearer with such a standard making interpretation uniform by removing significant uncertainties.

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	<u>OCE-1554474</u>

[table of contents | back to top]