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Abstract
This dataset is a meta-analysis of primary producer amino acid δ15N data presented in Ramirez et al. (2021). A
literature review provided primary producer amino acid isotope data with ecologically relevant information to
examine beta variability in trophic position estimates.
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Dataset Description

This dataset represents information from a meta-analysis of primary producer amino acid δ15N data that were
published in Ramirez et al. (2021) [https://doi.org/10.1111/2041-210X.13678].  

This meta-analysis fulfills a pressing need to comprehensively evaluate relevant sources of β value variability and its
contribution to the uncertainty in trophic position compound specific isotope analysis (TPCSIA). We first synthesized all
published primary producer AA δ15N data to investigate ecologically relevant sources of variability (e.g. taxonomy, tissue type,
habitat type, mode of photosynthesis). We then reviewed the biogeochemical mechanisms underpinning AA δ15N
and β value variability. 

Amino acids: alanine ,arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine,
methionine, phenylalanine, proline, serine, threonine, tyrosine, and valine

Environmental system: bacteria, freshwater, marine, or terrestrial
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(Comma Separated Values (.csv), 194.29 KB)
MD5:0ca4daa03f40ec6b5dd79f183d3cec73

Vascularization: vascular, or non-vascular

Phylum/Division: Brypohyta, Chlorophyta, Cyanophyta, Euryarchaeota, Haptophyta,
Magnoliophyta, Myzozoa, Ochrophyta, Pinophyta, Polypodiophyta, Proteobacteria, Rhodophyta, or Unknown

Stem Class: herbaceous, woody, or semi-woody

Life Cycle: annual, biennial, or perennial

Taxonomic Group: Cactus, Chemoautotroph, Cyanobacteria, Eukaryotic microalgae, Fern, Forb, Grass, Ice
algae, Leaf litter, Macroalgae, Macrophyte, Moss, POM, Seagrass, Shrub, Tree, or Vine

Respiration type: C3, C4, or CAM (Crassulacean acid metabolism)

Tissue type: flower, fruit, leaf, paddle, rachis, seed, shoot, whole, or wood

Cultivation type: culture, farm, filtered water, natural, sediment trap, or suburb

Methods & Sampling

Literature Review Methods

We performed a structured literature search for primary producer amino acid (AA) δ15N data in Scopus and
Google Scholar using the search terms nitrogen isotope OR 15N AND amino acid with each of the
terms plant, *plankton, algae, bacteria, and autotroph. We also used the search terms trophic, diet, and food
web to identify all studies that estimated trophic position via compound-specific stable isotope analysis (TPCSIA)
or that estimated AA-specific trophic discrimination factors (TDFs). We only included studies that reported
natural abundance stable isotope data. The literature search yielded 15 studies that reported beta values (β)
for individual primary producers, 44 studies that reported TDFs or paired consumer-diet data within a trophic
ecology context (e.g., controlled feeding study designed to characterize AA fractionation), and 176 studies
that applied the TPCSIA equation (Figure 2 from Ramirez et al. 2021). The literature search yielded an additional
36 studies that reported AA δ15N data for autotrophs from which β values could be calculated and 9 additional
studies from which TDFs could be calculated. The unit of replication for this meta-analysis was species-specific
tissue within study. Therefore, if a study had multiple β values for a single primary producer species, a simple
mean and standard deviation were calculated to consolidate the reported data into one estimate per species
per study. Tissue-specific data were maintained separately whenever reported. This process resulted in a final
dataset that consisted of 236 β values across ≥ 132 different primary producer genera in freshwater, marine,
and terrestrial ecosystems (Table 1, Figure 3 in Ramirez et al. 2021). Our meta-analysis focused primarily on β
values derived from Glx and Phe (βGlx-Phe) given that they are the most commonly measured trophic and
source AAs and applied to estimate TPCSIA. However, we present β values for all combinations of trophic (Asx,
Ala, Ile, Leu, Pro, Val) and source (Phe, Lys, Met, Tyr) AAs in Table 2 and Figures S1 (Ramirez et al. 2021).  We
also calculated β values for the “metabolic” AA Thr relative to the source AAs given its unique isotope dynamics
with trophic transfer (McMahon & McCarthy, 2016). Primary producer Met and Tyr δ15N data were not
routinely collected nor reported, therefore inferences were limited for these AAs.

A list of the publications is found in the Publications section below, and also in Ramirez et al. (2021).
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Data Files

File

prim_prod_nitrogen_isotopes.csv

Primary data file for dataset ID 870320
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Scientific_Name Scientific name unitless
Common_Name Common name unitless
Phylum_Division Taxonomic information unitless
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Project Information

Collaborative Research: Sources and transformations of export production: A novel 50-year
record of pelagic-benthic coupling from coral and plankton bioarchives (GoME Copepod Coral
Export)

Coverage: Jordan Basin, Gulf of Maine (43 to 44.25N, 68.5 to 66.5W)

NSF Award Abstract:
Changes in ocean life, the environment, and the climate can influence the timing and composition of biological
material that sinks to the sea floor. As this material sinks it is consumed by bottom-dwelling organisms such as
deep-sea corals. Similar to tree rings, corals preserve a history of growth embedded in their skeletons, which
can be analyzed using a new technique called microgeochemistry. This project is compiling a historic dataset
from deep-sea corals spanning 50 years in the Gulf of Maine to understand how biological material sinking to
the bottom has changed with time. Results from the coral analysis are being compared with archival samples
of small planktonic crustaceans, copepods, to better understand the connection between productivity in the
surface waters and the geochemical record in the coral tissue. A complementary modeling approach is
identifying environmental and climatic drivers of decadal-scale oceanographic change with the sources and
transformations of organic matter that connect the surface and the deep ocean. This cross-disciplinary project
is unifying transformational research with broader impacts focused on science education and outreach that
broaden the understanding of the links between climate, oceanography, and marine ecosystem response
using a 50-year historical context. Two open-access, media-enhanced, and National curriculum standards-
aligned educational lessons plans are being developed through partnerships with a science documentary
filmmaker, K-12 teachers from RI and ME, and the PBS LearningMedia Program. The topics of these lesson
plans are: 1) Deep-sea exploration: A window into the past and future, and 2) Changing food webs on a
changing planet. The project's educational goals include training of three graduate students, career
development of five early career researchers, and research experiences for undergraduates from
underrepresented groups in STEM. The multi-faceted research and education effort is addressing a question
described as highest priority in the Ocean Sciences by the National Research Council: How are ocean
biogeochemical and physical processes linked to today's climate and its variability?

Pelagic-benthic coupling regulates ocean production and food web dynamics, biogeochemical cycling, and
climate feedback mechanisms through the export of surface production to the ocean interior. Yet access to
long-term data sets of export production are scarce and urgently needed to test assumptions about 1) the
sources and transformations of organic matter through different food web pathways, and 2) the variability of
these processes across climatic, oceanographic, and ecological changes through time. The proposed work is
testing key hypotheses about bottom-up mechanisms that link decadal-scale oceanographic changes in
hydrography and biogeochemical cycling with phytoplankton community composition, zooplankton abundance
and trophic dynamics, and the resulting composition of export production. Complementary approaches are
generating multiple and independent 50+ year, annually resolved time series of phytoplankton community
composition, zooplankton trophic dynamics, and export composition. Coral tissue and archived zooplankton
samples are being analyzed using pioneering molecular geochemistry approaches to assess changes in diet
related variation in primary production. Deep-sea corals are being collected using a remotely operated vehicle
(ROV), and zooplankton are available through archival samples from a Gulf of Maine long-term monitoring
program managed by NOAA. The stable isotope data are being integrated with additional data from existing
long-standing ocean monitoring programs and incorporated into a unifying modeling approach to identify
unique ecosystem states and their environmental drivers. The project is focused on Jordan Basin in the Gulf of
Maine, which has a long history of oceanographic study and is experiencing significant changes due to climate
warming, making it an ideal natural laboratory for testing hypotheses on drivers of change in the composition
of exported organic matter, and the relative importance of primary (e.g., phyto-detritus) vs. secondary
production (e.g., copepod fecal pellets), and large vs. small pelagic plankton dynamics.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using
the Foundation's intellectual merit and broader impacts review criteria.
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