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Abstract
Background: Multivariate climate change presents an urgent need to understand how species adapt to complex
environments. Population genetic theory predicts that loci under selection will form monotonic allele frequency clines
with their selective environment, which has led to the wide use of genotype-environment associations (GEAs). This
study used a novel set of In silico simulations to elucidate the conditions under which allele frequency clines are
more or less likely to evolve as multiple quantitative traits adapt to multivariate environments. Zenodo archive of
GitHub Repository of all code used to create the simulations. Every directory includes a README describing the
code, and metadata files are included for the archived outputs. Modeling code details: Code was developed 2020-
2022 Simulation code was developed in SLiM, recapitated in pyslim, filtered with vcftools, and analyzed with R. Code
was developed by K. E. Lotterhos (PI)
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Dataset Description

See metadata files associated with simulation outputs in the repository.

The associated modeling code is archived at 10.5281/zenodo.7622893.

The tutorial associated with the publication is published
at https://marineomics.github.io/RDAtraitPredictionTutorial.html.

Methods & Sampling

Landscapes and demographies

https://www.bco-dmo.org/dataset/889769
https://www.bco-dmo.org/project/876610
https://www.bco-dmo.org/person/666501
https://www.bco-dmo.org/person/852000
https://marineomics.github.io/RDAtraitPredictionTutorial.html


All simulations consisted of 100 demes arranged on a 10 x 10 landscape grid. The 15 levels of landscape-
demography were broadly divided into three landscape categories: (i) a stepping stone landscape with latitudinal and
longitudinal selective clines (Stepping-Stone Clines, the most commonly simulated scenario in testing methods)
(Coop et al. 2010; Frichot et al. 2013; Günther & Coop 2013; de Villemereuil et al. 2014; Lotterhos & Whitlock 2015;
Rellstab et al. 2015; Gautier 2015; Forester et al. 2016, 2018), (ii) a stepping stone landscape with one latitudinal
cline and one non-linear longitudinal mountain range (Stepping-Stone Mountain, which left the potential for unique
architectures to arise to the same selective pressure at different geographic locations), and (iii) an estuary
landscape with a latitudinal and longitudinal selective clines (Estuary Clines, which simulated repeated independent
bouts of adaptation analogous to oysters or sticklebacks that repeatedly colonize and adapt to isolated freshwater
environments connected by gene flow in the marine environment). For simplicity, I refer to the latitudinal
environment as Temperature and the longitudinal environment as Env2. 

In summary, Stepping-Stone Mountain had a different environmental pattern than Stepping-Stone Clines but the
same demography, while Estuary Clines had the same environmental pattern as Stepping-Stone Clines but different
demography. The demographic parameters were chosen such that different landscapes achieved similar levels of
neutral genetic differentiation and local adaptation. Within each of the three landscapes, 5 demographies were
simulated that described the migration rates and effective population sizes on the landscape (see Supplemental
Methods).

See the Supplemental Methods for a description of the multivariate continuous space simulations with 6 traits.

Genetic map

The Wright-Fisher simulations were based on a previously published quantitative genetic model and a genetic map
(Lotterhos 2019). The genome consisted of 20 linkage groups each with 50,000 sites. The scaled recombination
rate (N metapop r = 0.01) gave a resolution of 0.001 cM between proximate bases and a total length of 50 cM for
each linkage group. This resolution mimicked a SNP chip, in which SNPs were collected across a large genetic map
(Lotterhos 2019). The population-scaled neutral mutation rate was (N metapop μ= 0.001). QTNs could evolve on
the first 10 linkage groups, while on the second 10 linkage groups only neutral loci could evolve. 

Genetic Architecture and Stabilizing Selection

Mutation: Quantitative trait nucleotides (QTNs) contributed additively to the optimal phenotype for each individual
without dominance. Three genic levels were simulated: oligogenic (few loci of large effect on the trait), moderately
polygenic (dozens to hundreds of loci with intermediate effects), and highly polygenic (hundreds of loci with small
effects). For QTN mutations under 1 trait or 2 traits without pleiotropy, the univariate effect size of a new QTN
mutation was drawn from a normal distribution with a mean of 0 and standard deviation sigma QTN. For QTN
mutations under 2 traits with pleiotropy, the bivariate effect size was drawn from a multivariate normal distribution
with a standard deviation of sigma QTN for both traits and no covariance, which gave flexibility for mutations to
evolve with effects on one or both traits. Thus, the distribution of effect sizes and linkage relationships among QTNs
was allowed to evolve. 

Pleiotropy: Within each genic category were 5 levels of pleiotropy and selection: (i) 1 temperature trait (which
adapted to the latitudinal cline),  (ii) 2 traits without pleiotropy and equal strengths of selection on both traits, (iii) 2
traits without pleiotropy and with weaker selection on the temperature trait, (iv) 2 traits with pleiotropy (QTNs could
evolve effects on one or both traits) and equal strengths of selection on both traits, and (v) 2 traits with pleiotropy
and with weaker selection on the latitudinal temperature trait.

Selection: The trait was subject to spatially heterogeneous stabilizing selection with the optimum for each location in
space given by the environment. For each individual in each generation, the fitness was determined by a Gaussian
function given the difference between the individual’s phenotype and the optimum at that location. 

See trait equation details in the supplemental document:
equation_details_genetic_architecture_and_stabilizing_selection.pdf

For information on burn-in, adding neutral loci with tree sequencing, filtering, and sampling, see the Supplemental
Methods.

Quantifying the degree of local adaptation, divergence, and structure

For each replicate, the degree of local adaptation was measured as (i) the difference between population fitness in
sympatry and allopatry following (Blanquart et al. 2013) and (ii) the correlation between the phenotype and
environmental cline for each trait. Overall divergence (genetic differentiation) was calculated as Weir and
Cockerham’s FST  (Weir & Cockerham 1984) in OutFLANK (Whitlock & Lotterhos 2015). Population structure was
estimated with a principal component analysis on the genotype matrix. 

Quantifying trait and allelic clines



(Comma Separated Values (.csv), 2.47 MB)
MD5:8bf218995df195620cd3a1462e7bb324

The degree of a trait cline was measured as Kendall's tau rank correlation coefficient between individual trait values
and deme environment. The degree of an allele frequency cline was measured as Kendall's tau rank correlation
coefficient (Kendall 1938, 1945) between deme allele frequency and deme environment, with significance being
determined after Bonferroni correction based on the number of SNPs in the data. QTNs that were significant by this
criteria were deemed “clinal QTNs.” The proportion of clinal QTNs excluded minor alleles with frequency < 0.01.

GEA performance

Latent-factor mixed models (LFMM) assess the linear relationship between genotype and environment while
controlling for structure as latent factors. LFMM was implemented using the function lfmm2 in the R package LEA
v.4.0.3 (Frichot et al. 2013; Frichot & François 2015; Caye et al. 2019). Redundancy analysis (RDA) and the partial
RDA (pRDA) including a structure correction (conditional on the first 2 PC axes) were implemented using the ‘rda’
function in the R package vegan (Dixon 2003). See Supplemental Methods for details of implementation and
correction for false discovery rate.

The performance of the association metrics were summarized as: (i) false discovery rate (FDR, proportion of
outliers that are neutral, lower is better), (ii) true positive rate (TPR, proportion of QTNs that are significant outliers,
higher is better), and (iii) the area under the precision-recall curve (AUC-PR, higher is better) (Lotterhos et al. 2022).
In order to provide the most optimistic estimate of a method’s performance, the performance statistics were
calculated by only including truly neutral loci unaffected by selection on linkage groups 11-20 and the QTNs. 

Importance of clinal QTNs to local adaptation

First framework: A linear model was used to conduct the GWAS with individual trait value as the response variable
and SNP genotype, PC1, and PC2 as explanatory variables. The proportion of GWAS hits that also showed clines
with the environmental variable was compared to the known number of clinal QTNs. Second framework: The
proportion of additive genetic variance (VA) for each QTN was calculated as the additive genetic variance for the
focal QTN standardized by the total additive genetic variance following (Lotterhos 2019). The proportion of additive
genetic variance (VA) explained by clinal QTNs was compared to a null expectation equal to the proportion of QTNs
that were clinal. Third framework: I estimated the proportion of local explained by different subsets of QTNs: (i)
QTNs with MAF > 0.01, (ii) clinal QTNs, and (iii) clinal QTNs inferred from latent factor mixed models that include a
structure correction. For (ii) and (iii), a GEA model was performed for each environment, and then outlier QTNs
were combined into a focal QTN set that was used for the local adaptation prediction. For each focal subset of
QTNs, the counts of the derived allele were multiplied by the QTN effect size, summed to get a phenotype, and that
phenotype was used in an in silico reciprocal transplant using the known phenotype-fitness function to estimate the
degree of local adaptation. This estimate was then divided by the total degree of local adaptation (using all QTNs
including those below the MAF threshold) to get an estimate of the proportion of local adaptation explained by that
focal subset. 

 

Data Processing Description

Processing notes from researcher: 

Conda environments used to create and process the simulations are included in the code repository
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Data Files

File

Summary data table for dataset 889769
filename: summary_20220428_20220726.csv

File processed with laminar pipeline "889769_v1_paradox_of_adaptive_trait_clines" at path 889769/1/data/summary_20220428_20220726.csv
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(Tape Archive (.tar), 8.87 GB)
MD5:f0ea2afc1c65cb3b466dac668259c89a

(Plain Text, 3.38 KB)
MD5:d90914a5c7eda47b3b54b57af8f955a2

(Tape Archive (.tar), 372.71 MB)
MD5:c936fac46abfbcf224f3d31be75fb894

(Tape Archive (.tar), 14.21 GB)
MD5:260e2f85de28a462de748e81bf62366a

(Plain Text, 7.76 KB)
MD5:76b68fe8451b5895268332128428b3f6

(Plain Text, 3.63 MB)
MD5:06ce383f26faeac78bbb7ab8e29489c3

(Plain Text, 22.78 KB)
MD5:470a7d6e497bc3e5046ef7409f88df26

Supplemental Files

File

Genotypes
filename: genotypes.tar

For each s imulation seed, a genotype matrix with SNPs in rows and individuals  in columns. 1000 individuals  were sampled from the landscape (10/deme) 
and SNPs were filtered to MAF > 0.01. Each entry in the matrix is  a 0, 1, or 2 corresponding to the counts of the derived allele.

Individual metadata 
filename: seed_Rout_ind_subset.txt_metadata.md

Metadata describing the columns in the "Individuals" file

Individuals compressed file
filename: individuals.tar

Data for each of the 1000 sampled individuals , for each of the 2250 s imulation seeds

Mutations
filename: mutations.tar

Data for each SNP mutation in a s imulation seed. Data correspond to rows in the Genotypes file.

Mutations metadata
filename: seed_Rout_muts_full.txt_metadata.md

Metadata for the mutation data describing each column in the data

Summary file
filename: summary_20220428_20220726.txt

Summary statistics for each s imulation seed

Summary file metadata
filename: summary_20220428_20220726.txt_metadata.md

Metadata for the summary file describing each column in the data
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Parameter Description Units
seed Simulation seed. unitless
n_samp_tot Total number of individuals sampled. unitless
n_samp_per_pop Number of individuals sampled from each deme. unitless
sd_fitness_among_inds Variance in fitness among all sampled individuals in

the simulation (sampling prob. is proportional to
fitness to mimic viability selection).

unitless
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sd_fitness_among_pops Variance in fitness among all demes in the simulation
after sampling (sampling prob. is proportional to
fitness to mimic viability selection).

unitless

final_LA Final amount of local adaptation in the simulation. unitless
K Number of populations used in analyses. unitless
Bonf_alpha The significance threshold for P-values applied to the

correlation.
unitless

numCausalLowMAFsample Number of causal loci that were not filtered out, but
were below the MAF cutoff. These were included in
the calculations.

unitless

all_corr_phen_temp For all individuals, correlation between individual
temp phenotype and environment temperature.

unitless

subsamp_corr_phen_temp After sampling 10 individuals from each deme with a
probability based on their fitness, correlation
individual temp phenotype and environment
temperature.

unitless

all_corr_phen_sal For all individuals, correlation between individual sal
phenotype and environment salinity.

unitless

subsamp_corr_phen_sal After sampling 10 individuals from each deme with a
probability based on their fitness, correlation
between individual sal phenotype and environment
salinity.

unitless

num_causal_prefilter Number of causal loci in sim before filtering for MAF
> 0.01.

unitless

num_causal_postfilter Number of causal loci in sim before filtering for MAF
> 0.01.

unitless

num_non_causal Number of neutral loci in sim arising on the half of
the genome where they could be linked to causal
loci.

unitless

num_neut_prefilter Total number of neutral loci on all LG before filtering
MAF > 0.01. This is not really accurate, since many
neutral loci were filtered out after output by pyslim -
causal loci were not subject to filtering.

unitless

num_neut_postfilter Total number of neutral loci on all LG after filtering
MAF > 0.01.

unitless

num_neut_neutralgenome Number of truly neutral loci in sim, unlinked to causal
loci, on LG 11-20.

unitless

num_causal_temp Number of loci with non-zero phenotypic effects on
the temperature phenotype.

unitless

num_causal_sal Number of loci with non-zero phenotypic effects on
the salinity phenotype.

unitless

num_multiallelic Rarely there is a back-mutation in SLiM, leading to a
0/0 0/1 1/1 1/2 0/2 2/2 genotypes. These were
filtered for analysis.

unitless

meanFst Overall FST (fixation index) calculated from
mean(T1)/mean(T2) in outflank.

unitless

va_temp_total Total additive genetic variance in the temperature
trait, based on the entire 10,000 individual sample.

unitless

va_sal_total Total additive genetic variance in the salinity trait,
based on the entire 10,000 individual sample.

unitless

Va_temp_sample Total additive genetic variance in the temperature
trait, based on the 1,000 individual (10 ind/deme x
100 demes) sample.

unitless



Va_sal_sample Total additive genetic variance in the salinity trait,
based on the entire 1,000 individual (10 ind/deme x
100 demes) sample.

unitless

nSNPs Total number of SNPs in analysis. unitless
median_causal_temp_cor Median abs(Spearman's correlation) between allele

frequency and temperature for causal loci.
unitless

median_causal_sal_cor Median abs(Spearman's correlation) between allele
frequency and salinity for causal loci.

unitless

median_neut_temp_cor Median abs(Spearman's correlation) between allele
frequency and temperature for neutral loci.

unitless

median_neut_sal_cor Median abs(Spearman's correlation) between allele
frequency and salinity for neutral loci.

unitless

cor_VA_temp_prop Proportion of VA in temperature phenotype
explained by clinal outliers for temperature, based
on kendall's correlation between deme allele
frequency and deme temperature.

unitless

cor_VA_sal_prop Proportion of VA in salinity phenotype explained by
clinal outliers for salinity, based on kendall's
correlation between deme allele frequency and deme
salinity.

unitless

cor_TPR_temp True positive rate for loci with non-zero effects on
temperature, based on kendall's correlation between
deme allele frequency and deme temperature.

unitless

cor_TPR_sal True positive rate for loci with non-zero effects on
salinity, based on kendall's correlation between deme
allele frequency and deme salinity.

unitless

cor_FDR_allSNPs_temp False discovery rate of (kendall's correlation between
deme allele frequency and deme temperature) for
loci with non-zero effects on temperature.

unitless

cor_FDR_neutSNPs_temp An optimistic calculation for false discovery rate of
(kendall's correlation between deme allele frequency
and deme temperature) for loci with non-zero
effects on temperature, excluding non-causal loci in
half of genome affected by selection.

unitless

cor_FDR_allSNPs_sal False discovery rate of (kendall's correlation between
deme allele frequency and deme salinity) for loci with
non-zero effects on salinity.

unitless

cor_FDR_neutSNPs_sal An optimistic calculation for false discovery rate of
(kendall's correlation between deme allele frequency
and deme temperature) for loci with non-zero
effects on temperature, excluding non-causal loci in
half of genome affected by selection.

unitless

num_causal_sig_temp_corr Number of causal loci on temperature trait that are
significant cor(af,temp) after Bonferroni correction.

unitless

num_causal_sig_sal_corr Number of causal loci on salinity trait that are
significant cor(af,salinity) after Bonferroni
correction.

unitless

num_notCausal_sig_temp_corr Number of non-causal (neutral and neutral-linked)
loci that are significant cor(af,temp) after Bonferroni
correction.

unitless

num_notCausal_sig_sal_corr Number of non-causal (neutral and neutral-linked)
loci that are significant cor(af,salinity) after
Bonferroni correction.

unitless

num_neut_sig_temp_corr Number of truly neutral loci (LG 11-20) that are
significant cor(af,temp) after Bonferroni correction.

unitless



num_neut_sig_sal_corr Number of truly neutral loci (LG 11-20) that are
significant cor(af,salinity) after Bonferroni
correction.

unitless

cor_AUCPR_temp_allSNPs AUC-PR of kendall's correlation between deme allele
frequency and deme temperature, based on the
whole genome and causal loci for temperature.

unitless

cor_AUCPR_temp_neutSNPs An optimistic estimate of AUC-PR of kendall's
correlation between deme allele frequency and deme
temperature, based on causal loci for temperature
and neutral loci not affected by selection (excluding
non-causal loci in half of genome affected by
selection).

unitless

cor_AUCPR_sal_allSNPs AUC-PR of kendall's correlation between deme allele
frequency and deme salinity, based on the whole
genome and causal loci for salinity.

unitless

cor_AUCPR_sal_neutSNPs An optimistic estimate of AUC-PR of kendall's
correlation between deme allele frequency and deme
salinity, based on causal loci for salinity and neutral
loci not affected by selection (excluding non-causal
loci in half of genome affected by selection).

unitless

cor_af_temp_noutliers Number of outliers for cor(af,temp) after Bonferroni
correction.

unitless

cor_af_sal_noutliers Number of outliers for cor(af,salinity) after
Bonferroni correction.

unitless

cor_FPR_temp_neutSNPs False positive rate in cor(af,temp) after Bonferroni
correction, based on neutral loci unaffected by
selection (LG 11-20).

unitless

cor_FPR_sal_neutSNPs False positive rate in cor(af,sal) after Bonferroni
correction, based on neutral loci unaffected by
selection (LG 11-20).

unitless

LEA3_2_lfmm2_Va_temp_prop Proportion of additive genetic variance (Va) in the
temperature trait explained by outliers in the LFMM
temp model.

unitless

LEA3_2_lfmm2_Va_sal_prop Proportion of additive genetic variance (Va) in the
saliniity trait explained by outliers in the LFMM salinity
model.

unitless

LEA3_2_lfmm2_TPR_temp True positive rate of the LFMM temp model for loci
with alleles that have non-zero effects on the
temperature phenotype.

unitless

LEA3_2_lfmm2_TPR_sal True positive rate of the LFMM salinity model for loci
with alleles that have non-zero effects on the salnity
phenotype.

unitless

LEA3_2_lfmm2_FDR_allSNPs_temp False discovery rate of the LFMM temp model for the
entire genome.

unitless

LEA3_2_lfmm2_FDR_allSNPs_sal False discovery rate of the LFMM temp model for the
entire genome.

unitless

LEA3_2_lfmm2_FDR_neutSNPs_temp An optimistic calculation of the false discovery rate
of the LFMM temp model, including only causal loci
and neutral loci not affected by selection (any non-
causal loci that arises on the half of the genome
affected by selection was excluded).

unitless

LEA3_2_lfmm2_FDR_neutSNPs_sal An optimistic calculation of the false discovery rate
of the LFMM salinity model, including only causal loci
and neutral loci not affected by selection (any non-
causal loci that arises on the half of the genome
affected by selection was excluded).

unitless



LEA3_2_lfmm2_AUCPR_temp_allSNPs The AUC-PR of the lfmm temp model based on the
entire genome.

unitless

LEA3_2_lfmm2_AUCPR_temp_neutSNPs An optimistic calculation of the AUC-PR of the LFMM
temp model, including only causal loci and neutral
loci not affected by selection (any non-causal loci
that arises on the half of the genome affected by
selection was excluded).

unitless

LEA3_2_lfmm2_AUCPR_sal_allSNPs The AUC-PR of the lfmm salinity model based on the
entire genome.

unitless

LEA3_2_lfmm2_AUCPR_sal_neutSNPs An optimistic calculation of the AUC-PR of the LFMM
salinity model, including only causal loci and neutral
loci not affected by selection (any non-causal loci
that arises on the half of the genome affected by
selection was excluded).

unitless

LEA3_2_lfmm2_mlog10P_tempenv_noutliers Number of outliers for the lfmm temp model (qvalue unitless
LEA3_2_lfmm2_mlog10P_salenv_noutliers Number of outliers for the lfmm salinity model

(qvalue
unitless

LEA3_2_lfmm2_num_causal_sig_temp Number of causal loci on the temp trait, significant in
the lfmm temp model (qvalue

unitless

LEA3_2_lfmm2_num_neut_sig_temp Number of neutral loci false positives (only neutral
loci not affected by selection), significant in the lfmm
temp model (qvalue

unitless

LEA3_2_lfmm2_num_causal_sig_sal Number of causal loci on the salinity trait, significant
in the lfmm salinity model (qvalue

unitless

LEA3_2_lfmm2_num_neut_sig_sal Number of neutral loci false positives (only neutral
loci not affected by selection), significant in the lfmm
salinity model (qvalue

unitless

LEA3_2_lfmm2_FPR_neutSNPs_temp False positive rate of lfmm temperature model. unitless
LEA3_2_lfmm2_FPR_neutSNPs_sal False positive rate of lfmm salinity model. unitless
RDA1_propvar Proportion of variance explained by first RDA axis.

RDA model: genotype ~ environment.
unitless

RDA2_propvar Proportion of variance explained by second RDA
axis. RDA model: genotype ~ environment.

unitless

RDA1_propvar_corr Proportion of variance explained by first RDA axis.
RDA model with structure correction: genotype ~
environment + Condition(PC1 + PC2).

unitless

RDA2_propvar_corr Proportion of variance explained by second RDA
axis. RDA model with structure correction: genotype
~ environment + Condition(PC1 + PC2).

unitless

RDA1_temp_cor Output of `summary(rdaout)$biplot[2,1]`, which is
the correlation between RDA1 and the temperature
environmental variable. RDA model: genotype ~
environment.

unitless

RDA1_sal_cor Output of `summary(rdaout)$biplot[1,1]`, which is
the correlation between RDA1 and the salinity
environmental variable. RDA model: genotype ~
environment.

unitless

RDA2_temp_cor Output of `summary(rdaout)$biplot[2,2]`, which is
the correlation between RDA2 and the temperature
environmental variable. RDA model: genotype ~
environment.

unitless

RDA2_sal_cor Output of `summary(rdaout)$biplot[1,2]`, which is
the correlation between RDA2 and the salinity
environmental variable. RDA model: genotype ~
environment.

unitless



RDA_Va_temp_prop Proportion of additive genetic variance (Va) in the
temperature trait explained by outliers in the RDA
outlier analysis, following (Capblanq 2018,
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-
0998.12906). RDA model: genotype ~ environment.

unitless

RDA_Va_temp_prop_corr Proportion of additive genetic variance (Va) in the
temperature trait explained by outliers in the RDA
outlier analysis, following (Capblanq 2018,
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-
0998.12906). RDA model with structure correction:
genotype ~ environment + Condition(PC1 + PC2).

unitless

RDA_Va_sal_prop Proportion of additive genetic variance (Va) in the
salinity trait explained by outliers in the RDA outlier
analysis, following (Capblanq 2018,
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-
0998.12906). RDA model: genotype ~ environment.

unitless

RDA_Va_sal_prop_corr Proportion of additive genetic variance (Va) in the
salinity trait explained by outliers in the RDA outlier
analysis, following (Capblanq 2018,
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-
0998.12906). RDA model with structure correction:
genotype ~ environment + Condition(PC1 + PC2).

unitless

RDA_TPR True positive rate of the RDA for all causal loci. Since
RDA is a multidimensional analysis, I did not
differentiate between loci that had causal effects on
temperature or salinity. RDA model: genotype ~
environment.

unitless

RDA_TPR_corr True positive rate of the RDA for all causal loci. Since
RDA is a multidimensional analysis, I did not
differentiate between loci that had causal effects on
temperature or salinity. RDA model with structure
correction: genotype ~ environment +
Condition(PC1 + PC2).

unitless

RDA_FDR_allSNPs False discovery rate of the RDA outlier analysis
based on the entire genome. RDA model: genotype
~ environment.

unitless

RDA_FDR_allSNPs_corr False discovery rate of the RDA outlier analysis
based on the entire genome. RDA model with
structure correction: genotype ~ environment +
Condition(PC1 + PC2).

unitless

num_RDA_sig_causal Number of causal loci that are significant in the RDA
analysis at q > 0.05. RDA model: genotype ~
environment.

unitless

num_RDA_sig_neutral Number of neutral loci (LG 11-20) that are significant
in the RDA analysis at q > 0.05. RDA model:
genotype ~ environment.

unitless

num_RDA_sig_causal_corr Number of causal loci that are significant in the RDA
analysis at q > 0.05. RDA model with structure
correction: genotype ~ environment +
Condition(PC1 + PC2).

unitless

num_RDA_sig_neutral_corr Number of neutral loci (LG 11-20) that are significant
in the RDA analysis at q > 0.05. RDA model with
structure correction: genotype ~ environment +
Condition(PC1 + PC2).

unitless



RDA_FDR_neutSNPs An optimistic calculation of the false discovery rate
of the RDA, including only causal loci and neutral loci
not affected by selection (any non-causal loci that
arises on the half of the genome affected by
selection was excluded). RDA model: genotype ~
environment.

unitless

RDA_FDR_neutSNPs_corr An optimistic calculation of the false discovery rate
of the RDA, including only causal loci and neutral loci
not affected by selection (any non-causal loci that
arises on the half of the genome affected by
selection was excluded). RDA model with structure
correction: genotype ~ environment +
Condition(PC1 + PC2).

unitless

RDA_AUCPR_allSNPs AUC-PR of the RDA outlier analysis based on the
entire genome. RDA model: genotype ~
environment.

unitless

RDA_AUCPR_neutSNPs An optimistic calculation of the AUC-PR of the RDA,
including only causal loci and neutral loci not affected
by selection (any non-causal loci that arises on the
half of the genome affected by selection was
excluded). RDA model: genotype ~ environment.

unitless

RDA_AUCPR_neutSNPs_corr An optimistic calculation of the AUC-PR of the RDA,
including only causal loci and neutral loci not affected
by selection (any non-causal loci that arises on the
half of the genome affected by selection was
excluded). RDA model with structure correction:
genotype ~ environment + Condition(PC1 + PC2).

unitless

RDA_FPR_neutSNPs False positive rate of the RDA analysis, based only
on neutral SNPs. RDA model: genotype ~
environment.

unitless

RDA_FPR_neutSNPs_corr False positive rate of the RDA analysis, based only
on neutral SNPs. RDA model with structure
correction: genotype ~ environment +
Condition(PC1 + PC2).

unitless

RDA_RDAmutpred_cor_tempEffect # pearson's correlation between the predicted
temperature effect from RDA and the true mutation
effect on temperature. RDA model: genotype ~
environment.

unitless

RDA_RDAmutpred_cor_salEffect # pearson's correlation between the predicted
salinity effect from RDA and the true mutation effect
on salinity. RDA model: genotype ~ environment.

unitless

RDA_absRDAmutpred_cor_tempVa # pearson's correlation between the abs(predicted
temperature effect from RDA) and the true mutation
Va on temperature. RDA model: genotype ~
environment.

unitless

RDA_absRDAmutpred_cor_salVa # pearson's correlation between the abs(predicted
salinity effect from RDA) and the true mutation Va
on salinity. RDA model: genotype ~ environment.

unitless

RDA_RDAmutpred_cor_tempEffect_structcorr # pearson's correlation between the predicted
temperature effect from RDA and the true mutation
effect on temperature. RDA model: genotype ~
environment. RDA model with structure correction:
genotype ~ environment + Condition(PC1 + PC2).

unitless

RDA_RDAmutpred_cor_salEffect_structcorr # pearson's correlation between the predicted
salinity effect from RDA and the true mutation effect
on salinity. RDA model: genotype ~ environment.
RDA model with structure correction: genotype ~
environment + Condition(PC1 + PC2).

unitless



RDA_absRDAmutpred_cor_tempVa_structcorr # pearson's correlation between the abs(predicted
temperature effect from RDA) and the true mutation
Va on temperature. RDA model: genotype ~
environment. RDA model with structure correction:
genotype ~ environment + Condition(PC1 + PC2).

unitless

RDA_absRDAmutpred_cor_salVa_structcorr # pearson's correlation between the abs(predicted
salinity effect from RDA) and the true mutation Va
on salinity. RDA model: genotype ~ environment.
RDA model with structure correction: genotype ~
environment + Condition(PC1 + PC2).

unitless

RDA_cor_RDA20000temppredict_tempPhen Correlation between the true temperature
phenotype and that predicted from an RDA based
on 20K SNPs. see `seed_Rout_RDA_predictions` for
correlations with less loci used to make the
prediction. RDA model: genotype ~ environment.

unitless

RDA_cor_RDA20000salpredict_salPhen Correlation between the true salinity phenotype and
that predicted from an RDA based on 20K SNPs. see
`seed_Rout_RDA_predictions` for correlations with
less loci used to make the prediction. RDA model:
genotype ~ environment.

unitless

RDA_cor_RDA20000temppredict_tempPhen_structcorr Correlation between the true temperature
phenotype and that predicted from an RDA based
on 20K SNPs. see `seed_Rout_RDA_predictions` for
correlations with less loci used to make the
prediction. RDA model with structure correction:
genotype ~ environment + Condition(PC1 + PC2).

unitless

RDA_cor_RDA20000salpredict_salPhen_structcorr Correlation between the true salinity phenotype and
that predicted from an RDA based on 20K SNPs. see
`seed_Rout_RDA_predictions` for correlations with
less loci used to make the prediction. RDA model
with structure correction: genotype ~ environment
+ Condition(PC1 + PC2).

unitless

cor_PC1_temp Correlation between individual loading on PC1 from
the principle components based on the Genotype-
matrix (individual genotypes labeled as 0,1,2) and
temperature of the deme where it was sampled.

unitless

cor_PC1_sal Correlation between individual loading on PC1 from
the principle components based on the Genotype-
matrix and salnity of the deme where it was
sampled.

unitless

cor_PC2_temp Correlation between individual loading on PC2 from
the principle components based on the Genotype-
matrix and temperature of the deme where it was
sampled.

unitless

cor_PC2_sal Correlation between individual loading on PC2 from
the principle components based on the Genotype-
matrix and salnity of the deme where it was
sampled.

unitless

cor_LFMMU1_temp Correlation between the individual loading on the
latent factor 1 from the lfmm model based on
temperature.

unitless

cor_LFMMU1_sal Correlation between the individual loading on the
latent factor 1 from the lfmm model based on
salnity.

unitless

cor_LFMMU2_temp Correlation between the individual loading on the
latent factor 2 from the lfmm model based on
temperature.

unitless



cor_LFMMU2_sal Correlation between the individual loading on the
latent factor 2 from the lfmm model based on
salnity.

unitless

cor_PC1_LFMMU1_temp Correlation between (individual loading on PC1 from
the principle components based on the Genotype-
matrix) and (individual loading on the latent factor 1
from the lfmm model based on temperature).

unitless

cor_PC1_LFMMU1_sal Correlation between (individual loading on PC1 from
the principle components based on the Genotype-
matrix) and (individual loading on the latent factor 1
from the lfmm model based on salinity).

unitless

cor_PC2_LFMMU1_temp Correlation between (individual loading on PC2 from
the principle components based on the Genotype-
matrix) and (individual loading on the latent factor 1
from the lfmm model based on temperature).

unitless

cor_PC2_LFMMU1_sal Correlation between (individual loading on PC2 from
the principle components based on the Genotype-
matrix) and (individual loading on the latent factor 1
from the lfmm model based on salinity).

unitless

gwas_TPR_sal True positive rate of the GWAS model for the salinity
trait.

unitless

gwas_TPR_temp True positive rate of the GWAS model for the
temperature trait.

unitless

gwas_FDR_sal_neutbase False discovery rate of the GWAS model for the
salinity trait, only including QTNs and purely neutral
loci unaffected by selection.

unitless

gwas_FDR_temp_neutbase False discovery rate of the GWAS model for the
temperature trait, only including QTNs and purely
neutral loci unaffected by selection.

unitless

clinalparadigm_sal_proptop5GWASclines Proportion of the top 5% of GWAS loci with the
smallest P-values for the salinity trait (true and false
positives) that show clines.

unitless

clinalparadigm_temp_proptop5GWASclines Proportion of the top 5% of GWAS loci with the
smallest P-values for the temperature trait (true and
false positives) that show clines.

unitless

clinalparadigm_sal_propsigGWASclines Proportion of GWAS hits for the salinity trait (true
and false positives) that show clines.

unitless

clinalparadigm_temp_propsigGWASclines Proportion of GWAS hits for the temperature trait
(true and false positives) that show clines.

unitless
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Instruments

Dataset-
specific
Instrument
Name

Northeastern's High Performance Computing Cluster

Generic
Instrument
Name

High-Performance Computing Cluster

Generic
Instrument
Description

"High-Performance Computing" (HPC) refers to a class of evolving technologies that provide leading-
edge computational capabilities, including scalable high-performance computers, high-end graphic
systems, and high-speed networks. HPC may be used for molecular modeling, genome analysis, and
image processing, among others.
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Project Information

CAREER: Evaluation of machine learning algorithms for understanding and predicting adaptation to
multivariate environments with a Model Validation Program (MVP) (Model Validation Program)

Coverage: East coast of North America

NSF Award Abstract:
Environmental change can be rapid and involve multiple aspects of the environment changing at the same time,
such as warming and increased disease pressure. Rapid environmental change threatens the productivity of
aquaculture and crops on which humans depend. Predicting organisms' vulnerabilities to rapid and multifactor
environmental change, however, is a major scientific challenge. A hurdle to addressing this challenge arises from the
complex and non-intuitive ways that organisms adapt, through changes at the level of the DNA sequence, to many
environmental stresses at the same time. Thus, there is a need for new approaches to understand and predict
adaptation in multivariate environments. To address this need, this project integrates research and education with a
Model Validation Program (MVP). The research is developing and evaluating Machine Learning Algorithms (MLAs) for
understanding and predicting adaptation of organisms to multivariate environments from their DNA sequences. To
evaluate MLAs, this research combines both data simulation and an empirical test in the field with the Eastern
Oyster, which provide important ecosystem services and support a multi-million dollar industry. For oysters, this
research is studying how temperature, disease pressure, and salinity interact with evolutionary history to determine
fitness in the field. This research advances efforts toward addressing the major scientific challenge of predicting
adaptation in complex environments by integrating concepts across the frontiers of marine, evolutionary, and
statistical sciences in a new way. Machine learning and model validation are not traditionally taught in the marine and
environmental sciences, but are becoming increasingly relevant to these fields. As part of a broader education
program, this research is developing MVP Learning Modules for high school students and undergraduates, which
help students build the foundational knowledge they need to critically evaluate and apply models. Modules are being
disseminated to hundreds of students in the greater Boston area and are being made available online for
widespread use. The MVP mentoring program is training graduate students, undergraduates, and high school
students in marine evolutionary ecology, statistical genomics, and machine learning. This research addresses a
pressing societal need to more informatively match genotypes to environments for restoration, farming, and
assisted gene flow efforts. Results are being disseminated to stakeholders in the oyster industry.

The goal of this research is to evaluate if MLAs, which can model non-linearities, can be used to understand and
predict adaptation to multivariate environments under a wide range of scenarios. In Objective 1, the Principal
Investigator (PI) is creating simulated datasets with different aspects of realism, and using them to evaluate and
refine the MLAs. This novel set of simulations is studying genome evolution under high gene flow in complex,
multivariate environments. In Objective 2, the PI is building on their expertise with the Eastern oyster to evaluate the
MLAs in a field setting. The PI is first developing a comprehensive seascape genomic dataset and using it to train
MLAs to predict an individual's multivariate environment based on a single nucleotide polymorphism genotype. Then,
the PI is testing if the MLA prediction can predict the fitness of different genotypes from across the species range
when raised in common garden field conditions. In Objective 3, the PI is integrating research and education by using
the data obtained from Objs. 1 and 2 to develop a series of original "MVP Learning Modules" with interactive web
apps for persons at different levels of understanding, using the relatable example of an oyster restoration project.
This research lays the foundation for future studies by producing datasets that could become classical examples
for developing and benchmarking innovative modeling approaches.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the
Foundation's intellectual merit and broader impacts review criteria.
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Funding

Funding Source Award
NSF Division of Ocean Sciences (NSF OCE) OCE-2043905

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=2043905
https://www.bco-dmo.org/award/876609
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