Dataset: Percentage cover of the benthos by live coral at 10 m depth at sites in Moorea Moorea, French Polynesia from 2008 to 2021

ValidatedFinal no updates expectedDOI: 10.26008/1912/bco-dmo.918265.1Version 1 (2024-01-23)Dataset Type:Other Field Results

Principal Investigator: Peter J. Edmunds (California State University Northridge)

Scientist: Scott Burgess (Florida State University)

Scientist: Stephane Maritorena (University of California-Santa Barbara)

BCO-DMO Data Manager: Amber D. York (Woods Hole Oceanographic Institution)


Program: Long Term Ecological Research network (LTER)

Project: Moorea Coral Reef Long-Term Ecological Research site (MCR LTER)


Abstract

Data Abstract: These data describe the percentage cover of the benthos by live coral at 10 m depth at sites LTER1 and LTER2 in Moorea. Results paper abstract, Edmunds et al. (2024, doi:10.1007/s00442-024-05517-y): * [See "Related Datasets" section for access to related datasets discussed here] Understanding population dynamics is a long-standing objective of ecology, but the need for progress in this area has become urgent. For coral reefs, achieving this objective is impeded by a lac...

Show more

The ecological methods are described in detail in Edmunds et al. (2024, doi:10.1007/s00442-024-05517-y), and are briefly summarized below.

The study utilized the time series of the Moorea Coral Reef LTER, as they relate to coral community dynamics on the north shore fore reef. Annual measurements of coral cover, the density of coral settlers, and the density of small corals were used together with records of the environmental conditions to which they were exposed. Analyses focused on 2008–2021, which captured the final years of the last population outbreak of the crown of thorns (COTs) sea star, the coral population recovery that took place between 2010 and 2019, and coral mortality attributed to bleaching in 2019. Biological data came from two sites (LTER1 and LTER2) that are ~ 3 km apart, with environmental data from the same or similar sites (temperature), one of the two sites (flow at LTER1), or from 4.5 km resolution remote sensing data (Chlorophyll a).

Coral cover was measured annually (April except for 2020 [August] and 2021 [May]) at 10-m depth along a 50 m, permanently marked transect at LTER 1 and LTER 2. Along each transect, 40 photoquadrats (0.5 × 0.5 m) were photographed at positions that were randomly selected in 2005, but fixed thereafter. Pictures were illuminated with strobes, and analyzed using CPCe or CoralNET software with manual annotation of 200 randomly located points on each image. Substrata beneath the points were categorized to coral genus, and the percentage cover for all corals (scleractinians and Millepora) and Pocillopora spp., is reported. The changes in cover of corals (scleractinians and Millepora) provided a holistic summary of the coral community consistent with how we have described it elsewhere and how it is described in the broader scientific literature on coral reefs. The separate summary for Pocillopora spp. provided a measure of coral cover that is the product of the most abundant coral settlers found on tiles deployed in the same habitat (i.e., pocilloporids). The density of small corals (≤ 4-cm diameter) was quantified in the field annually, shortly after the photoquadrats were recorded (but not in 2020 due to COVID-19), and was completed using quadrats (0.5 × 0.5 m) placed in the same positions as the photoquadrats. The benthos, including beneath branching corals, was inspected for small corals that were recorded to genus, and the densities of all corals and Pocillopora spp. are reported in units of corals 0.25 m-2.

* See "Related Datasets" section for access to related dataset pages which include dataset-specific methodology.


Related Datasets

IsDerivedFrom

Dataset: https://doi.org/10.6073/pasta/15d5120fb4f7b79811b16287eae15a35
Moorea Coral Reef LTER, & Edmunds, P. (2024). MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Corals, ongoing since 2005 [Data set]. Environmental Data Initiative. https://doi.org/10.6073/PASTA/15D5120FB4F7B79811B16287EAE15A35 (Accessed 2024-02-21).
IsRelatedTo

Dataset: Edmunds et al. 2024 Oecologia: Seawater Temperature
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Benthic seawater temperature at 10m depth in Moorea, French Polynesia from 2005 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918318.1
IsRelatedTo

Dataset: Edmunds et al. 2024 Oecologia: Settler Density
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Density of coral settlers detected on settlement tiles each year at two 10m sites on the north shore of Moorea, French Polynesia from 2008 to 2020. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918324.1
IsRelatedTo

Dataset: Edmunds et al. 2024 Oecologia: Small Coral Density
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Density of small corals at two 10m sites on the north shore of Moorea, French Polynesia from 2005 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 http://lod.bco-dmo.org/id/dataset/918330
IsRelatedTo

Dataset: Edmunds et al. 2024 Oecologia: Flow Speeds
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Flow speed on the north shore of Moorea, French from 2007 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918306.1

Related Publications

Results

Edmunds, P. J., Maritorena, S., & Burgess, S. C. (2024). Early post-settlement events, rather than settlement, drive recruitment and coral recovery at Moorea, French Polynesia. Oecologia, 204(3), 625–640. https://doi.org/10.1007/s00442-024-05517-y
Methods

Beijbom, O., Edmunds, P. J., Roelfsema, C., Smith, J., Kline, D. I., Neal, B. P., Dunlap, M. J., Moriarty, V., Fan, T.-Y., Tan, C.-J., Chan, S., Treibitz, T., Gamst, A., Mitchell, B. G., & Kriegman, D. (2015). Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation. PLOS ONE, 10(7), e0130312. https://doi.org/10.1371/journal.pone.0130312
Software

Kohler, K. E., & Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, 32(9), 1259–1269. doi:10.1016/j.cageo.2005.11.009