Dataset: Hydrolysis rates from dissolved organic phosphorus (DOP) hydrolysis experiments with marine cyanobacterium Synechococcus laboratory cultures (WH8102 and WH5701) from 2018-2023

ValidatedFinal no updates expectedDOI: 10.26008/1912/bco-dmo.928984.1Version 1 (2024-05-28)Dataset Type:experimental

Principal Investigator: Solange Duhamel (University of Arizona)

Co-Principal Investigator: Julia Diaz (University of California-San Diego Scripps)

Scientist: Kahina Djaoudi (University of Arizona)

Scientist: Emily Waggoner (University of Arizona)

BCO-DMO Data Manager: Amber D. York (Woods Hole Oceanographic Institution)


Project: Collaborative Research: Assessing the role of compound-specific phosphorus hydrolase transformations in the marine phosphorus cycle (P-hydrolase)


Abstract

Dissolved organic phosphorus (DOP) hydrolysis rates from marine cyanobacterium Synechococcus (WH8102 and WH5701) laboratory cultures. These data were collected as part of a study of "Dissolved organic phosphorus bond-class utilization by Synechococcus" (Waggoner et al., 2024). Study Abstract: Dissolved organic phosphorus (DOP) contains compounds with phosphoester (P-O-C), phosphoanhydride (P-O-P), and phosphorus-carbon (P-C) bonds. Despite DOP’s importance as a nutritional source for marine...

Show more

This dataset was utilized for Waggoner et al. (2024) Figure 2 and supplementary figure 2. See "Related Datasets" section on this page for other closely-related data from this study published in Waggoner et al. (2024).  They are also listed under the BCO-DMO Project Page: https://www.bco-dmo.org/project/747715.


Related Datasets

IsRelatedTo

Dataset: Synechococcus DOP Hydrolysis Experiment - cell counts and IVF
Relationship Description: These datasets were collected as part of the same experiments included in study "Dissolved organic phosphorus bond-class utilization by Synechococcus" (Waggoner et al., 2024, doi: 10.1093/femsec/fiae099).
Duhamel, S., Diaz, J., Djaoudi, K., Waggoner, E. (2024) In vivo fluorescence and flow cytometry cell counts from dissolved organic phosphorus (DOP) hydrolysis experiments with marine cyanobacterium Synechococcus laboratory cultures (WH8102 and WH5701) from 2018-2023. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-06-06 doi:10.26008/1912/bco-dmo.929471.1
IsRelatedTo

Dataset: Synechococcus DOP Displacement Experiment
Relationship Description: These datasets were collected as part of the same experiments included in study "Dissolved organic phosphorus bond-class utilization by Synechococcus" (Waggoner et al., 2024, doi: 10.1093/femsec/fiae099).
Duhamel, S., Diaz, J., Djaoudi, K., Waggoner, E. (2024) Laboratory-cultured Synechococcus (WH8102 and WH5701) MUF-P hydrolysis inhibition by dissolved organic phosphorus (DOP) from experiments between 2018-2023. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-06-06 doi:10.26008/1912/bco-dmo.929459.1
IsRelatedTo

Dataset: Synechococcus Growth on DOP Experiments - IVF
Relationship Description: These datasets were collected as part of the same experiments included in study "Dissolved organic phosphorus bond-class utilization by Synechococcus" (Waggoner et al., 2024, doi: 10.1093/femsec/fiae099).
Duhamel, S., Diaz, J., Djaoudi, K., Waggoner, E. (2024) Laboratory-cultured Synechococcus (WH8102 and WH5701) growth (vivo fluorescence) on dissolved organic phosphorus (DOP) from experiments between 2018-2023. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-06-03 doi:10.26008/1912/bco-dmo.929212.1

Related Publications

Results

Waggoner, E. M., Djaoudi, K., Diaz, J. M., & Duhamel, S. (2024). Dissolved Organic Phosphorus Bond-Class Utilization by Synechococcus. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiae099