Winter survey data from Lake Erie from Mar 2023 to May 2024

Website: https://www.bco-dmo.org/dataset/940112 Data Type: Cruise Results Version: 1 Version Date: 2024-11-18

Project

» Lake Erie Center for Fresh Waters and Human Health (Great Lakes Center)

Contributors	Affiliation	Role
McKay, Robert Michael	University of Windsor	Principal Investigator
<u>Bullerjahn, George S.</u>	Bowling Green State University (BGSU)	Co-Principal Investigator
<u>Hudson, Neve C</u>	University of Windsor	Scientist, Student
DeLorie, Geoffrey	United States Coast Guard (USCG)	Contact
<u>Gresham, Brian</u>	United States Coast Guard (USCG)	Contact
Peace, Taylor	United States Coast Guard (USCG)	Contact
<u>Zittel, James</u>	United States Coast Guard (USCG)	Contact
Mickle, Audrey	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

This dataset includes winter survey data from Lake Erie collected on SAR Erie Guardian, USCGC Morro Bay, USCGC Neah Bay, CCGS Griffon, CCGS Samuel Risley, MV Vigilant from March 2023 to May 2024. The survey includes environmental observations, physico-chemical data, chlorophyll, total and dissolved nutrients, plankton taxonomic classification, and cell abundance. The Lake Erie Center for Fresh Waters and Human Health is a five-year, multi-institutional effort aimed at understanding the environmental factors and ongoing changes that influence the growth and toxicity of cyanobacterial harmful algal blooms (cHABs) in Lake Erie.

Table of Contents

- <u>Coverage</u>
- Dataset Description
 - Methods & Sampling
 - Data Processing Description
 - <u>BCO-DMO Processing Description</u>
- Data Files
- Supplemental Files
- <u>Related Publications</u>
- Parameters
- Instruments
- Deployments
- Project Information
- <u>Funding</u>

Coverage

Location: Laurentian Great Lakes (Lake Erie, Lake St. Clair, Lake Huron, Lake Superior) Spatial Extent: N:48.417 E:-79.3847 S:41.5153 W:-88.933 Temporal Extent: 2023-10-23 - 2024-04-22

Dataset Description

Lake Erie Center for Fresh Waters and Human Health

The Lake Erie Center for Fresh Waters and Human Health is a five-year, multi-institutional effort aimed at understanding the environmental factors and ongoing changes that influence the growth and toxicity of cyanobacterial harmful algal blooms (cHABs) in Lake Erie. The Center will support three research projects. Specifically these projects address the following aims: first, how environmental cues promote or constrain the proliferation of cHAB species in mixed populations; second, how environmental cues influence toxin production by cHAB species; third, how other member of the microbial assemblage influence cHAB growth and toxicity. The Center will provide a Community Engagement Core to lead outreach activities that will inform the general public on the effects of cHABs by efforts that include: (1) a community engaged scholarship training for scientists associated with the Center, (2) community-engaged scholarship training for practitioners or community members associated with the Center, and (3) a stakeholder needs assessment for Great Lakes and environmental health literacy to inform general outreach information needs. A citizen science engagement with charter boat captains will further develop a near real-time database on cHAB severity in Lake Erie, and the Facilities Core will provide metadata that not only serve the three stated research projects, but also yield a database available to all Great Lakes scientists. The outcomes are to involve community stakeholders and researchers in the Great Lakes on issues regarding human health, climate change and awareness of threats to our fresh water resources.

Methods & Sampling

The vessel will come to a stop when the predetermined sampling station is reached, at a time decided on by the ship's command. The location and time of sampling will be recorded, as well as the environmental conditions. The trained crew members of the vessel will then use a YSI water quality sonde to collect data and that will be recorded. A Secchi disc with measurement indicators every 10 centimeters will then be deployed and recordings will be taken on both the upcast and downcast. A Van Dorn water sampler will then be used to collect water at a depth of 1 meter. Water samples are then transferred to 1 L polyethylene storage bottles or 2 L plastic storage bottles, and stored in a dark place at 4 °C until picked up by personnel on the same day. The samples will then be transported in coolers containing ice packs to Bowling Green State University (BGSU). Samples were also collected from Sandpoint Beach and Mitchell's Bay locations using the same methods and observational conventions.

Sub-samples for chlorophyll *a* will be taken at BGSU using 0.4 um polycarbonate membranes and a vacuum filtration system. The filter will be placed in a screw cap polyethylene centrifuge tube and stored in a dark freezer until extraction. The samples will be extracted using 90% acetone and kept at -20 °C for 24 hours, and chlorophyll will be measured using a TD-700 fluorometer (Welschmeyer, 1994).

Total and dissolved nutrient samples will be held in acid-washed 250 mL polyethylene bottles, and stored in a dark freezer at -20 °C until they are ready to be analyzed. Dissolved nutrient sub-samples will be taken by filtering the agitated sampled water through 0.22 um filters. The data will then be shipped to the National Center for Water Quality Research at Heidelberg University (Tiffin, OH).

Data Processing Description

The meteorological data was taken directly from readings using vessel instruments, marine forecasts, and expert observations. The physico-chemical data was obtained using a YSI 600QS multiparameter sonde, and nutrient concentrations were analyzed at the National Center for Water Quality Research at Heidelberg University. Fluorometric classification of phytoplankton was measured using a FluoroProbe (bbe Moldaenke GmbH, Schwentinental, Germany), and plankton taxonomic classification and cell enumeration was conducted by Aquatic Taxonomy Specialists (Malinta, OH). The extractive chlorophyll was read using a TD-700 Fluorometer (Turner Designs Inc., San Jose, CA), the sample concentrations were then calculated with the equation below, and the averages for each site were calculated from the triplicate samples.

Chla = ((reading*volume_{extracted})/volume_{filtered})* dilution factor

BCO-DMO Processing Description

- imported "Winter_Lake_Erie_2024_Metadata.csv" and "Winter_Lake_Erie_2024_Deployments.csv" into BCO

DMO system

- combined "Date" and "Time" to create "ISO_DateTime_UTC" field in ISO UTC format in

"Winter_Lake_Erie_2024_Metadata.csv"

- modified parameter names to conform with BCO-DMO system requirements for all files
- replaced "," with "." in one "pH" value in "Winter_Lake_Erie_2024_Metadata.csv"

- exported "940112_v1_lake_erie_winter_survey_2023-2024.csv" as main datafile and "winter_lake_erie_2023-2024 deployments.csv" as supplemental file

[table of contents | back to top]

Data Files

File

940112_v1_lake_erie_winter_survey_2023-2024.csv(Comma Separated Values (.csv), 13.76 KB) MD5:c9bf20e6cf7c9f16d8b884fbff2052be

Primary data file for dataset ID 940112, version 1

[table of contents | back to top]

Supplemental Files

File

winter_lake_erie_2023-2024_deployments.csv(Comma Separated Values (.csv), 1.85 KB) MD5:cd2a0102a6f5e4e36b6caafbf2269730

Deployment metadata for dataset ID 940112, version 1

[table of contents | back to top]

Related Publications

Welschmeyer, N. A. (1994). Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8), 1985–1992. doi:<u>10.4319/lo.1994.39.8.1985</u> *Methods*

[table of contents | back to top]

Parameters

Parameter	Description	Units
Station	Station of sample collection	unitless
Deployment	Cruise ID	unitless
Alternate_Deployment	Alternate cruise descriptions	unitless
Date	Date of sample collection in Y-m-d format	unitless
Time	Time of survey (EST); format: hh:mm	unitless

ISO_DateTime_UTC	Date and time of survey (UTC) formatted to ISO8601 standard: YYYY-MM-DDThh:mmZ	unitless
Lake	The name of the lake the sample was collected from.	unitless
Lat	Latitude of sample collection; positive values = North	decimal degrees
Long	Longitude of sample collection; positive values = East	decimal degrees
Max_Depth	Maximum depth of water	meters (m)
Sample_Depth	Depth of sample collection	meters (m)
Air_Temp	Air temperature	degrees C
Water_Temp	Water temperature	degrees C
lce_cover	Percent ice cover around sampling area	percent (%)
Snow_cover	Percent snow cover on ice around sampling area	percent (%)
Ice_type	Ice type	unitless
Ice_thickness	Thickness of ice	centimeter (cm)
DO	Dissolved oxygen percent	percent (%)
DO2	Dissolved mg of oxygen per litre of water	mg/L
рН	рН	unitless (pH scale)
Sp_Cond	Specific conductance; Electrical conductivity of a water	microSiemen per cm (µS cm-1)
Secchi	Average from upcast and downcast readings; measure of water transparency	meters (m)
Cloud_cover	Percentage of cloud cover	percent (%)
	1	

Wind	Wind speed in knots	Knots (Kt)
Wind2	Wind direction in cardinal (compass) directions	unitless
Wind3	Wind direction in degrees	degree
Barometer	Barometric pressure	millibars (Mb)
Sea_state	Wave height	meters (m)
Weather	Weather observations during sample collection	unitless
Avg_Chl_a	Average extracted chlorophyll	microgram per liter (µg L-1)
NH3	Dissolved nutrients: Ammonia	microgram per liter (µg L-1)
CL	Dissolved nutrients: chloride	microgram per liter (µg L-1)
SO4	Dissolved nutrients: sulphate	microgram per liter (µg L-1)
NO2	Dissolved nutrients: Nitrite	microgram per liter (µg L-1)
NO3	Dissolved nutrients: Nitrate	microgram per liter (µg L-1)
SIO2	Dissolved nutrients: silica	microgram per liter (µg L-1)
SRP	Dissolved nutrients: Soluble Reactive Phosphorus	microgram per liter (µg L-1)
Total_Phosphorus	Particulate nutrients: Total Phosphorus	microgram per liter (µg L-1)
Total_Nitrogen	Particulate nutrients: Total Nitrogen	microgram per liter (µg L-1)
Avg_Green_Algae	Higher level taxonomic cell abundance: Green algae (Fluoroprobe)	ug/L
Avg_Bluegreen	Higher level taxonomic cell abundance: Bluegreen algae (Fluoroprobe)	ug/L
<u> </u>		

Avg_Diatoms	Higher level taxonomic cell abundance: Diatoms (Fluoroprobe)	ug/L
Avg_Cryptophyta	Higher level taxonomic cell abundance: Cryptophyta (Fluoroprobe)	ug/L
Avg_Yellow_Substances	Average Humic acid	relative units (r.u.)
Avg_Total_Conc	Total cell concentration (Fluoroprobe)	ug/L
Avg_Transmission	Average Fluoroprobe light transmission	percent (%)
Aulacoseira_islandica	Cell abundance: Aulacoseira islandica	Cells per milliliter (cells/mL)
Stephanodiscus_spp	Cell abundance: Stephanodiscus spp.	Cells per milliliter (cells/mL)
Fragilaria_spp	Cell abundance: Fragilaria spp.	Cells per milliliter (cells/mL)
Skeletonema_spp	Cell abundance: Skeletonema_spp	Cells per milliliter (cells/mL)
centric_small	Cell abundance: centric (small)	Cells per milliliter (cells/mL)
Nitzschia	Cell abundance: Nitzschia	Cells per milliliter (cells/mL)
Asterionella	Cell abundance: Asterionella	Cells per milliliter (cells/mL)
Cyanobacteria	Cell abundance: Cyanobacteria	Cells per milliliter (cells/mL)
cryptomonads	Cell abundance: cryptomonads	Cells per milliliter (cells/mL)
Dinoflagellates	Cell abundance: Dinoflagellates	Cells per milliliter (cells/mL)
chlorophytes	Cell abundance: chlorophytes	Cells per milliliter (cells/mL)
Microflagellates	Cell abundance: Microflagellates	Cells per milliliter (cells/mL)

Instruments

Dataset- specific Instrument Name	Sample bottles, 1 or 2 L (Nalgene or equivalent), Plastic wash bottle, 500 mL
Generic Instrument Name	Bottle
Dataset- specific Description	Water samples are then transferred to 1 L polyethylene storage bottles or 2 L plastic storage bottles, and stored in a dark place at 4 oC until picked up by personnel on the same day. Total and dissolved nutrient samples will be held in acid-washed 250 mL polyethylene bottles, and stored in a dark freezer at -20 oC until they are ready to be analyzed.
Generic Instrument Description	A container, typically made of glass or plastic and with a narrow neck, used for storing drinks or other liquids.

Dataset- specific Instrument Name	FluoroProbe
Generic Instrument Name	Fluorometer
Dataset- specific Description	Fluorometric classification of phytoplankton was measured using a FluoroProbe (bbe Moldaenke GmbH, Schwentinental, Germany), and plankton taxonomic classification and cell enumeration was conducted by Aquatic Taxonomy Specialists (Malinta, OH).
Generic Instrument Description	A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ.

Dataset- specific Instrument Name	National Center for Water Quality Research at Heidelberg University
Generic Instrument Name	Nutrient Autoanalyzer
Dataset- specific Description	Total and dissolved nutrient samples will be held in acid-washed 250 mL polyethylene bottles, and stored in a dark freezer at -20 oC until they are ready to be analyzed. Dissolved nutrient sub-samples will be taken by filtering the agitated sampled water through 0.22 um filters. The data will then be shipped to the National Center for Water Quality Research at Heidelberg University (Tiffin, OH).
Generic Instrument Description	Nutrient Autoanalyzer is a generic term used when specific type, make and model were not specified. In general, a Nutrient Autoanalyzer is an automated flow-thru system for doing nutrient analysis (nitrate, ammonium, orthophosphate, and silicate) on seawater samples.

Dataset-specific Instrument Name	Secchi disc
Generic Instrument Name	Secchi Disc
Dataset-specific DescriptionA Secchi disc with measurement indicators every 10 centimeters will then be deple and recordings will be taken on both the upcast and downcast.	
Generic Instrument Typically, a 16 inch diameter white/black quadrant disc used to measure water op clarity	

Dataset- specific Instrument Name	TD-700 fluorometer
Generic Instrument Name	Turner Designs 700 Laboratory Fluorometer
Dataset- specific Description	The extractive chlorophyll was read using a TD-700 Fluorometer (Turner Designs Inc., San Jose, CA), the sample concentrations were then calculated with the equation below, and the averages for each site were calculated from the triplicate samples.
Generic Instrument Description	The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements.

Dataset-specific Instrument Name	Vacuum manifold system to accommodate 3 filter funnels
Generic Instrument Name	vacuum manifold
Dataset-specific Description	Vacuum manifold system to accommodate 3 filter funnels
Generic Instrument Description	A device that is used for the vacuum-driven processing of multiwell strips or plates, or spin columns.

Dataset- specific Instrument Name	2 L Van Dorn water sampler
Generic Instrument Name	Van Dorn water sampler
Dataset- specific Description	A Van Dorn water sampler will then be used to collect water at a depth of 1 meter.
Generic Instrument Description	A free-flushing water sample bottle comprising a cylinder (polycarbonate, acrylic or PVC) with a stopper at each end. The bottle is closed by means of a messenger from the surface releasing the tension on a latex band and thus pulling the two stoppers firmly into place. A thermometer can be mounted inside the bottle. One or more bottles can be lowered on a line to allow sampling at a single or multiple depth levels. Van Dorn samplers are suitable for for physical (temperature), chemical and biological sampling in shallow to very deep water. Bottles are typically lowered vertically through the water column although a horizontal version is available for sampling near the seabed or at thermoclines or chemoclines. Because of the lack of metal parts the bottles are suitable for trace metal sampling, although the blue polyurethane seal used in the Alpha version may leach mercury. The Beta version uses white ASA plastic seals that do not leach mercury but are less durable.

Dataset- specific Instrument Name	YSI 600QS multiparameter sonde
Generic Instrument Name	YSI Sonde 6-Series
Dataset- specific Description	The physico-chemical data was obtained using a YSI 600QS multiparameter sonde, and nutrient concentrations were analyzed at the National Center for Water Quality Research at Heidelberg University.
Generic Instrument Description	YSI 6-Series water quality sondes and sensors are instruments for environmental monitoring and long-term deployments. YSI datasondes accept multiple water quality sensors (i.e., they are multiparameter sondes). Sondes can measure temperature, conductivity, dissolved oxygen, depth, turbidity, and other water quality parameters. The 6-Series includes several models. More from YSI.

[table of contents | back to top]

Deployments

NB-2024-03

Website	https://www.bco-dmo.org/deployment/943623
Platform	USCGC NEAH BAY
Start Date	2024-03-12
End Date	2024-03-12

NB-2024-02

Website	https://www.bco-dmo.org/deployment/943626
Platform	USCGC NEAH BAY
Start Date	2024-02-20
End Date	2024-02-20

NB-2024-01

Website	https://www.bco-dmo.org/deployment/943629
Platform	USCGC NEAH BAY
Start Date	2024-01-22
End Date	2024-01-22

GR-2024-01

Website	https://www.bco-dmo.org/deployment/943632
Platform	CCGS GRIFFON
Start Date	2024-02-03
End Date	2024-02-03

Website	https://www.bco-dmo.org/deployment/943635
Platform	CCGS GRIFFON
Start Date	2024-02-09
End Date	2024-02-09

GR-2024-03

Website	https://www.bco-dmo.org/deployment/943639
Platform	CCGS GRIFFON
Start Date	2024-02-22
End Date	2024-02-22

GR-2024-04

Website	https://www.bco-dmo.org/deployment/943644
Platform	CCGS GRIFFON
Start Date	2024-03-04
End Date	2024-03-04

GR-2024-05

Website	https://www.bco-dmo.org/deployment/943647
Platform	CCGS GRIFFON
Start Date	2024-03-07
End Date	2024-03-07

MB-2024-01

Website	https://www.bco-dmo.org/deployment/943655
Platform	USCGC Morro Bay
Start Date	2024-12-04
End Date	2024-12-04

MB-2024-02

Website	https://www.bco-dmo.org/deployment/943658
Platform	USCGC Morro Bay
Start Date	2024-01-08
End Date	2024-01-08

MB-2024-03

Website	https://www.bco-dmo.org/deployment/943661
Platform	USCGC Morro Bay
Start Date	2024-01-31
End Date	2024-01-31

MB-2024-04

Website	https://www.bco-dmo.org/deployment/943667	
Platform	USCGC Morro Bay	
Start Date	2024-03-21	
End Date	2024-03-21	

MB-2024-05

Website	https://www.bco-dmo.org/deployment/943670	
Platform	USCGC Morro Bay	
Start Date	2024-05-19	
End Date	2024-05-19	

OF-2024-01

Website	https://www.bco-dmo.org/deployment/943673	
Platform	Erie Guardian	
Start Date	2024-10-23	
End Date	2024-10-23	

OF-2024-02

Website	https://www.bco-dmo.org/deployment/943676	
Platform	Vigilant	
Start Date	2024-04-15	
End Date	2024-04-15	

OF-2024-03

Website	https://www.bco-dmo.org/deployment/943679	
Platform	Vigilant	
Start Date	2024-04-22	
End Date	2024-04-22	

SR-2024-01

Website	https://www.bco-dmo.org/deployment/943682	
Platform	CCGS SAMUEL RISLEY	
Start Date	2024-03-19	
End Date	2024-03-19	

SR-2024-02

Website	https://www.bco-dmo.org/deployment/943685	
Platform	CCGS SAMUEL RISLEY	
Start Date	2024-03-28	
End Date	2024-03-28	

[table of contents | back to top]

Project Information

Lake Erie Center for Fresh Waters and Human Health (Great Lakes Center)

Website: https://www.bgsu.edu/great-lakes-center.html

Coverage: Laurentian Great Lakes

NSF Award Abstract:

The Lake Erie Center for Fresh Waters and Human Health is a five-year, multi-institutional effort aimed at understanding the environmental factors and ongoing changes that influence the growth and toxicity of cyanobacterial harmful algal blooms (cHABs) in Lake Erie. The Center will support three research projects. Specifically these projects address the following aims: first, how environmental cues promote or constrain the proliferation of cHAB species in mixed populations; second, how environmental cues influence toxin production by cHAB species; third, how other member of the microbial assemblage influence cHAB growth and toxicity. The Center will provide a Community Engagement Core to lead outreach activities that will inform the general public on the effects of cHABs by efforts that include: (1) a community engaged scholarship training for scientists associated with the Center, (2) community-engaged scholarship training for practitioners or community members associated with the Center, and (3) a stakeholder needs assessment for Great Lakes and environmental health literacy to inform general outreach information needs. A citizen science engagement with charter boat captains will further develop a near real-time database on cHAB severity in Lake Erie, and the Facilities Core will provide metadata that not only serve the three stated research projects, but also yield a database available to all Great Lakes scientists. The outcomes are to involve community stakeholders and researchers in the Great Lakes on issues regarding human health, climate change and awareness of threats to our fresh water resources.

The Center is jointly supported by NSF and by the National Institute for Environmental Health Sciences (NIEHS).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	<u>OCE-1840715</u>

[table of contents | back to top]