The Carbon Flux Explorer (CFE) is designed to perform sustained high-frequency observations of POC and PIC sedimentation within the upper kilometer (or twilight zone) of the ocean for seasons to years and to operate in an observational context not dependent on ships. The CFE melds the concept of current-following, sample-collecting neutrally buoyant sediment traps with photographic imaging of the particles as they are deposited in a sediment trap.
The CFE and the operation of its particle flux sensing Optical Sedimentation Recorder (OSR) have been discussed in detail in Bishop et al. (2016). CFE has a design mission capability of 8 months of hourly operations (16 months @ 2 hours) and has been demonstrated by deployments of 40 days; CFE design depth is 1500m and it has been proven to 1000 m. The system has demonstrated operations in high sea states.
Diagram: https://datadocs.bco-dmo.org/docs/302/C-SNOW/data_docs/CFE_CFE-Cal.png
Bishop, J. K. B., Fong, M. B., and Wood, T. J.: Robotic observations of high wintertime carbon export in California coastal waters, Biogeosciences, 13, 3109–3129, https://doi.org/10.5194/bg-13-3109-2016, 2016.
Bourne, H. L., Bishop, J. K. B., Wood, T. J., Loew, T. J., and Liu, Y.: Carbon Flux Explorer optical assessment of C, N and P fluxes, Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, 2019
Dataset Name | PI-Supplied Description | PI-Supplied Name |
---|---|---|
Original transmitted-light imagery and processed attenuance images of sinking particles observed by autonomous Carbon Flux Explorers deployed 100-500m in the California Current Regime, during the CCE-LTER process study (P1706) between June 2 and July 1, 2 | The CFE and the operation of its particle flux sensing Optical Sedimentation Recorder (OSR) have been discussed in detail in Bishop et al. (2016). CFE has a design mission capability of 8 months of hourly operations (16 months @ 2 hours …) and has been demonstrated by deployments of 40 days; CFE design depth is 1500m and it has been proven to 1000 m. The system has demonstrated operations in high sea states. Briefly, once deployed, the CFE dives below the surface make particle flux observations at target depths as it drifts with currents. The OSR wakes once the CFE has reached the target depth. On first wake-up of a given CFE dive, the sample stage is flushed with water and images of the particle-free stage are obtained. Particles settle through a 1-cm opening hexagonal celled light baffle into a high-aspect ratio funnel assembly before landing on a 2.54 cm diameter glass sample stage. At 25-minute intervals, particles are imaged at 13 µm pixel resolution in three lighting modes: dark field, transmitted and transmitted-cross polarized. | Carbon Flux Explorer |
Size fractionated Particulate Carbon Flux 100-500m measured by autonomous Carbon Flux Explorers deployed during the CCE-LTER process study (P1706) between June 2 and July 1, 2017 in the California Current Regime. | The CFE and the operation of its particle flux sensing Optical Sedimentation Recorder (OSR) have been discussed in detail in Bishop et al. (2016). CFE has a design mission capability of 8 months of hourly operations (16 months @ 2 hours …) and has been demonstrated by deployments of 40 days; CFE design depth is 1500m and it has been proven to 1000 m. The system has demonstrated operations in high sea states. Briefly, once deployed, the CFE dives below the surface make particle flux observations at target depths as it drifts with currents. The OSR wakes once the CFE has reached the target depth. On first wake-up of a given CFE dive, the sample stage is flushed with water and images of the particle-free stage are obtained. Particles settle through a 1-cm opening hexagonal celled light baffle into a high-aspect ratio funnel assembly before landing on a 2.54 cm diameter glass sample stage. At 25-minute intervals, particles are imaged at 13 µm pixel resolution in three lighting modes: dark field, transmitted and transmitted-cross polarized. | Carbon Flux Explorer |
CTD profile data from Carbon Flux Explorers deployed 100-500m in the California Current Regime, during the CCE-LTER process study (P1706) between June 2 and July 1, 2017 |