Dataset: Thermal Stress Experiment: Untargeted Metabolites
Data Citation:
Strand, E., Putnam, H. (2023) Untargeted metabolomic data collected during a thermal stress experiment using reef building corals collected in Kāne'ohe Bay, O'ahu, Hawai'i. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2023-01-31 [if applicable, indicate subset used]. doi:10.26008/1912/bco-dmo.886427.1 [access date]
Terms of Use
This dataset is licensed under Creative Commons Attribution 4.0.
If you wish to use this dataset, it is highly recommended that you contact the original principal investigators (PI). Should the relevant PI be unavailable, please contact BCO-DMO (info@bco-dmo.org) for additional guidance. For general guidance please see the BCO-DMO Terms of Use document.
DOI:10.26008/1912/bco-dmo.886427.1
Project:
Co-Principal Investigator:
Hollie Putnam (University of Rhode Island, URI)
Student:
Emma Strand (University of Rhode Island, URI)
BCO-DMO Data Manager:
Karen Soenen (Woods Hole Oceanographic Institution, WHOI BCO-DMO)
Version:
1
Version Date:
2023-01-31
Restricted:
No
Validated:
Yes
Current State:
Final no updates expected
Untargeted metabolomic data collected during a thermal stress experiment using reef building corals collected in Kāne'ohe Bay, O'ahu, Hawai'i.
Abstract:
Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia (Exaiptasia pallida), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral.